import contextlib import json import cv2 import pandas as pd from PIL import Image from collections import defaultdict import sys import pathlib CURRENT_DIR = pathlib.Path(__file__).parent sys.path.append(str(CURRENT_DIR)) from utils import * def convert_coco_json(json_dir='../coco/annotations/', use_segments=False, cls91to80=False): save_dir = make_dirs() # output directory coco80 = coco91_to_coco80_class() # Import json for json_file in sorted(Path(json_dir).resolve().glob('*.json')): if str(json_file).split("/")[-1] != "instances_val2017.json": continue fn = Path(save_dir) / 'labels' / json_file.stem.replace('instances_', '') # folder name fn.mkdir() with open(json_file) as f: data = json.load(f) # Create image dict images = {'%g' % x['id']: x for x in data['images']} # Create image-annotations dict imgToAnns = defaultdict(list) for ann in data['annotations']: imgToAnns[ann['image_id']].append(ann) txt_file = open(Path(save_dir / 'val2017').with_suffix('.txt'), 'a') # Write labels file for img_id, anns in tqdm(imgToAnns.items(), desc=f'Annotations {json_file}'): img = images['%g' % img_id] h, w, f = img['height'], img['width'], img['file_name'] bboxes = [] segments = [] txt_file.write('./images/' + '/'.join(img['coco_url'].split('/')[-2:]) + '\n') for ann in anns: if ann['iscrowd']: continue # The COCO box format is [top left x, top left y, width, height] box = np.array(ann['bbox'], dtype=np.float64) box[:2] += box[2:] / 2 # xy top-left corner to center box[[0, 2]] /= w # normalize x box[[1, 3]] /= h # normalize y if box[2] <= 0 or box[3] <= 0: # if w <= 0 and h <= 0 continue cls = coco80[ann['category_id'] - 1] if cls91to80 else ann['category_id'] - 1 # class box = [cls] + box.tolist() if box not in bboxes: bboxes.append(box) # Segments if use_segments: if len(ann['segmentation']) > 1: s = merge_multi_segment(ann['segmentation']) s = (np.concatenate(s, axis=0) / np.array([w, h])).reshape(-1).tolist() else: s = [j for i in ann['segmentation'] for j in i] # all segments concatenated s = (np.array(s).reshape(-1, 2) / np.array([w, h])).reshape(-1).tolist() s = [cls] + s if s not in segments: segments.append(s) # Write with open((fn / f).with_suffix('.txt'), 'a') as file: for i in range(len(bboxes)): line = *(segments[i] if use_segments else bboxes[i]), # cls, box or segments file.write(('%g ' * len(line)).rstrip() % line + '\n') txt_file.close() def min_index(arr1, arr2): """Find a pair of indexes with the shortest distance. Args: arr1: (N, 2). arr2: (M, 2). Return: a pair of indexes(tuple). """ dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1) return np.unravel_index(np.argmin(dis, axis=None), dis.shape) def merge_multi_segment(segments): """Merge multi segments to one list. Find the coordinates with min distance between each segment, then connect these coordinates with one thin line to merge all segments into one. Args: segments(List(List)): original segmentations in coco's json file. like [segmentation1, segmentation2,...], each segmentation is a list of coordinates. """ s = [] segments = [np.array(i).reshape(-1, 2) for i in segments] idx_list = [[] for _ in range(len(segments))] # record the indexes with min distance between each segment for i in range(1, len(segments)): idx1, idx2 = min_index(segments[i - 1], segments[i]) idx_list[i - 1].append(idx1) idx_list[i].append(idx2) # use two round to connect all the segments for k in range(2): # forward connection if k == 0: for i, idx in enumerate(idx_list): # middle segments have two indexes # reverse the index of middle segments if len(idx) == 2 and idx[0] > idx[1]: idx = idx[::-1] segments[i] = segments[i][::-1, :] segments[i] = np.roll(segments[i], -idx[0], axis=0) segments[i] = np.concatenate([segments[i], segments[i][:1]]) # deal with the first segment and the last one if i in [0, len(idx_list) - 1]: s.append(segments[i]) else: idx = [0, idx[1] - idx[0]] s.append(segments[i][idx[0]:idx[1] + 1]) else: for i in range(len(idx_list) - 1, -1, -1): if i not in [0, len(idx_list) - 1]: idx = idx_list[i] nidx = abs(idx[1] - idx[0]) s.append(segments[i][nidx:]) return s if __name__ == '__main__': convert_coco_json('./datasets/coco/annotations', # directory with *.json use_segments=True, cls91to80=True) # zip results # os.system('zip -r ../coco.zip ../coco')