File size: 81,476 Bytes
e6c79f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b551795
e6c79f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b551795
e6c79f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b551795
e6c79f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
import threading
import os
import contextlib
import torch
import torch.nn as nn
from PIL import Image, ImageDraw, ImageFont, ExifTags
from PIL import __version__ as pil_version
from multiprocessing.pool import ThreadPool
import numpy as np
from itertools import repeat
import glob
import cv2
import tempfile
import hashlib
from pathlib import Path
import time
import torchvision
import math
import re
from typing import List, Union, Dict
import pkg_resources as pkg
from types import SimpleNamespace
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
import random
import yaml
import logging.config
import sys
import pathlib
CURRENT_DIR = pathlib.Path(__file__).parent
sys.path.append(str(CURRENT_DIR))

LOGGING_NAME = 'ultralytics'
LOGGER = logging.getLogger(LOGGING_NAME) 
for fn in LOGGER.info, LOGGER.warning:
    setattr(LOGGER, fn.__name__, lambda x: fn(x))
IMG_FORMATS = "bmp", "dng", "jpeg", "jpg", "mpo", "png", "tif", "tiff", "webp", "pfm"  # include image suffixes
VID_FORMATS = "asf", "avi", "gif", "m4v", "mkv", "mov", "mp4", "mpeg", "mpg", "ts", "wmv"  # include video suffixes
TQDM_BAR_FORMAT = '{l_bar}{bar:10}{r_bar}'  # tqdm bar format
NUM_THREADS = min(8, os.cpu_count())
PIN_MEMORY = str(os.getenv("PIN_MEMORY", True)).lower() == "true"  # global pin_memory for dataloaders
_formats = ["xyxy", "xywh", "ltwh"]
CFG_FLOAT_KEYS = {'warmup_epochs', 'box', 'cls', 'dfl', 'degrees', 'shear'}
CFG_FRACTION_KEYS = {
    'dropout', 'iou', 'lr0', 'lrf', 'momentum', 'weight_decay', 'warmup_momentum', 'warmup_bias_lr', 'fl_gamma',
    'label_smoothing', 'hsv_h', 'hsv_s', 'hsv_v', 'translate', 'scale', 'perspective', 'flipud', 'fliplr', 'mosaic',
    'mixup', 'copy_paste', 'conf', 'iou'}
CFG_INT_KEYS = {
    'epochs', 'patience', 'batch', 'workers', 'seed', 'close_mosaic', 'mask_ratio', 'max_det', 'vid_stride',
    'line_thickness', 'workspace', 'nbs'}
CFG_BOOL_KEYS = {
    'save', 'exist_ok', 'pretrained', 'verbose', 'deterministic', 'single_cls', 'image_weights', 'rect', 'cos_lr',
    'overlap_mask', 'val', 'save_json', 'save_hybrid', 'half', 'dnn', 'plots', 'show', 'save_txt', 'save_conf',
    'save_crop', 'hide_labels', 'hide_conf', 'visualize', 'augment', 'agnostic_nms', 'retina_masks', 'boxes', 'keras',
    'optimize', 'int8', 'dynamic', 'simplify', 'nms', 'v5loader'}
# Get orientation exif tag
for orientation in ExifTags.TAGS.keys():
    if ExifTags.TAGS[orientation] == 'Orientation':
        break

def segments2boxes(segments):
    """
    It converts segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)

    Args:
      segments (list): list of segments, each segment is a list of points, each point is a list of x, y coordinates

    Returns:
      (np.ndarray): the xywh coordinates of the bounding boxes.
    """
    boxes = []
    for s in segments:
        x, y = s.T  # segment xy
        boxes.append([x.min(), y.min(), x.max(), y.max()])  # cls, xyxy
    return xyxy2xywh(np.array(boxes))  # cls, xywh


def check_version(
    current: str = "0.0.0",
    minimum: str = "0.0.0",
    name: str = "version ",
    pinned: bool = False,
    hard: bool = False,
    verbose: bool = False,
) -> bool:
    """
    Check current version against the required minimum version.

    Args:
        current (str): Current version.
        minimum (str): Required minimum version.
        name (str): Name to be used in warning message.
        pinned (bool): If True, versions must match exactly. If False, minimum version must be satisfied.
        hard (bool): If True, raise an AssertionError if the minimum version is not met.
        verbose (bool): If True, print warning message if minimum version is not met.

    Returns:
        bool: True if minimum version is met, False otherwise.
    """
    current, minimum = (pkg.parse_version(x) for x in (current, minimum))
    result = (current == minimum) if pinned else (current >= minimum)  # bool
    warning_message = f"WARNING ⚠️ {name}{minimum} is required by YOLOv8, but {name}{current} is currently installed"
    if verbose and not result:
        LOGGER.warning(warning_message)
    return result


TORCH_1_9 = check_version(torch.__version__, '1.9.0')


def smart_inference_mode():
    # Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator
    def decorate(fn):
        return (torch.inference_mode if TORCH_1_9 else torch.no_grad)()(fn)

    return decorate


def box_iou(box1, box2, eps=1e-7):
    # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
    """
    Return intersection-over-union (Jaccard index) of boxes.
    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
    Arguments:
        box1 (Tensor[N, 4])
        box2 (Tensor[M, 4])
    Returns:
        iou (Tensor[N, M]): the NxM matrix containing the pairwise
            IoU values for every element in boxes1 and boxes2
    """

    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
    inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)

    # IoU = inter / (area1 + area2 - inter)
    return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)


class LoadImages:
    # YOLOv8 image/video dataloader, i.e. `yolo predict source=image.jpg/vid.mp4`
    def __init__(
        self, path, imgsz=640, stride=32, auto=True, transforms=None, vid_stride=1
    ):
        # *.txt file with img/vid/dir on each line
        if isinstance(path, str) and Path(path).suffix == ".txt":
            path = Path(path).read_text().rsplit()
        files = []
        for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
            p = str(Path(p).resolve())
            if "*" in p:
                files.extend(sorted(glob.glob(p, recursive=True)))  # glob
            elif os.path.isdir(p):
                files.extend(sorted(glob.glob(os.path.join(p, "*.*"))))  # dir
            elif os.path.isfile(p):
                files.append(p)  # files
            else:
                raise FileNotFoundError(f"{p} does not exist")
        # include image suffixes
        images = [x for x in files if x.split(".")[-1].lower() in IMG_FORMATS]
        videos = [x for x in files if x.split(".")[-1].lower() in VID_FORMATS]
        ni, nv = len(images), len(videos)

        self.imgsz = imgsz
        self.stride = stride
        self.files = images + videos
        self.nf = ni + nv  # number of files
        self.video_flag = [False] * ni + [True] * nv
        self.mode = "image"
        self.auto = auto
        self.transforms = transforms  # optional
        self.vid_stride = vid_stride  # video frame-rate stride
        self.bs = 1
        if any(videos):
            self.orientation = None  # rotation degrees
            self._new_video(videos[0])  # new video
        else:
            self.cap = None
        if self.nf == 0:
            raise FileNotFoundError(
                f"No images or videos found in {p}. "
                f"Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}"
            )

    def __iter__(self):
        self.count = 0
        return self

    def __next__(self):
        if self.count == self.nf:
            raise StopIteration
        path = self.files[self.count]

        if self.video_flag[self.count]:
            # Read video
            self.mode = "video"
            for _ in range(self.vid_stride):
                self.cap.grab()
            success, im0 = self.cap.retrieve()
            while not success:
                self.count += 1
                self.cap.release()
                if self.count == self.nf:  # last video
                    raise StopIteration
                path = self.files[self.count]
                self._new_video(path)
                success, im0 = self.cap.read()

            self.frame += 1
            s = f"video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: "

        else:
            # Read image
            self.count += 1
            im0 = cv2.imread(path)  # BGR
            if im0 is None:
                raise FileNotFoundError(f"Image Not Found {path}")
            s = f"image {self.count}/{self.nf} {path}: "

        if self.transforms:
            im = self.transforms(im0)  # transforms
        else:
            im = LetterBox(self.imgsz, self.auto, stride=self.stride)(image=im0)
            im = im.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
            im = np.ascontiguousarray(im)  # contiguous

        return path, im, im0, self.cap, s

    def _new_video(self, path):
        # Create a new video capture object
        self.frame = 0
        self.cap = cv2.VideoCapture(path)
        self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
        if hasattr(cv2, "CAP_PROP_ORIENTATION_META"):  # cv2<4.6.0 compatibility
            self.orientation = int(
                self.cap.get(cv2.CAP_PROP_ORIENTATION_META)
            )  # rotation degrees
            # Disable auto-orientation due to known issues in https://github.com/ultralytics/yolov5/issues/8493
            # self.cap.set(cv2.CAP_PROP_ORIENTATION_AUTO, 0)

    def _cv2_rotate(self, im):
        # Rotate a cv2 video manually
        if self.orientation == 0:
            return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE)
        elif self.orientation == 180:
            return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE)
        elif self.orientation == 90:
            return cv2.rotate(im, cv2.ROTATE_180)
        return im

    def __len__(self):
        return self.nf  # number of files


class LetterBox:
    """Resize image and padding for detection, instance segmentation, pose"""

    def __init__(
        self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, stride=32
    ):
        self.new_shape = new_shape
        self.auto = auto
        self.scaleFill = scaleFill
        self.scaleup = scaleup
        self.stride = stride

    def __call__(self, labels=None, image=None):
        if labels is None:
            labels = {}
        img = labels.get("img") if image is None else image
        shape = img.shape[:2]  # current shape [height, width]
        new_shape = labels.pop("rect_shape", self.new_shape)
        if isinstance(new_shape, int):
            new_shape = (new_shape, new_shape)

        # Scale ratio (new / old)
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        # only scale down, do not scale up (for better val mAP)
        if not self.scaleup:
            r = min(r, 1.0)

        # Compute padding
        ratio = r, r  # width, height ratios
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
        dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
        if self.auto:  # minimum rectangle
            dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride)  # wh padding
        elif self.scaleFill:  # stretch
            dw, dh = 0.0, 0.0
            new_unpad = (new_shape[1], new_shape[0])
            ratio = (
                new_shape[1] / shape[1],
                new_shape[0] / shape[0],
            )  # width, height ratios

        dw /= 2  # divide padding into 2 sides
        dh /= 2
        if labels.get("ratio_pad"):
            labels["ratio_pad"] = (labels["ratio_pad"], (dw, dh))  # for evaluation

        if shape[::-1] != new_unpad:  # resize
            img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
        top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
        left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
        img = cv2.copyMakeBorder(
            img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)
        )  # add border

        if len(labels):
            labels = self._update_labels(labels, ratio, dw, dh)
            labels["img"] = img
            labels["resized_shape"] = new_shape
            return labels
        else:
            return img

    def _update_labels(self, labels, ratio, padw, padh):
        """Update labels"""
        labels["instances"].convert_bbox(format="xyxy")
        labels["instances"].denormalize(*labels["img"].shape[:2][::-1])
        labels["instances"].scale(*ratio)
        labels["instances"].add_padding(padw, padh)
        return labels


class Annotator:
    # YOLOv8 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
    def __init__(
        self,
        im,
        line_width=None,
        font_size=None,
        font="Arial.ttf",
        pil=False,
        example="abc",
    ):
        assert (
            im.data.contiguous
        ), "Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images."
        # non-latin labels, i.e. asian, arabic, cyrillic
        non_ascii = not is_ascii(example)
        self.pil = pil or non_ascii
        if self.pil:  # use PIL
            self.pil_9_2_0_check = check_version(
                pil_version, "9.2.0"
            )  # deprecation check
            self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
            self.draw = ImageDraw.Draw(self.im)
            self.font = ImageFont.load_default()
        else:  # use cv2
            self.im = im
        self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2)  # line width

    def box_label(
        self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255)
    ):
        # Add one xyxy box to image with label
        if isinstance(box, torch.Tensor):
            box = box.tolist()
        if self.pil or not is_ascii(label):
            self.draw.rectangle(box, width=self.lw, outline=color)  # box
            if label:
                if self.pil_9_2_0_check:
                    _, _, w, h = self.font.getbbox(label)  # text width, height (New)
                else:
                    w, h = self.font.getsize(
                        label
                    )  # text width, height (Old, deprecated in 9.2.0)
                outside = box[1] - h >= 0  # label fits outside box
                self.draw.rectangle(
                    (
                        box[0],
                        box[1] - h if outside else box[1],
                        box[0] + w + 1,
                        box[1] + 1 if outside else box[1] + h + 1,
                    ),
                    fill=color,
                )
                # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')  # for PIL>8.0
                self.draw.text(
                    (box[0], box[1] - h if outside else box[1]),
                    label,
                    fill=txt_color,
                    font=self.font,
                )
        else:  # cv2
            p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
            cv2.rectangle(
                self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA
            )
            if label:
                tf = max(self.lw - 1, 1)  # font thickness
                # text width, height
                w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0]
                outside = p1[1] - h >= 3
                p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
                cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA)  # filled
                cv2.putText(
                    self.im,
                    label,
                    (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
                    0,
                    self.lw / 3,
                    txt_color,
                    thickness=tf,
                    lineType=cv2.LINE_AA,
                )

    def rectangle(self, xy, fill=None, outline=None, width=1):
        # Add rectangle to image (PIL-only)
        self.draw.rectangle(xy, fill, outline, width)

    def text(self, xy, text, txt_color=(255, 255, 255), anchor="top"):
        # Add text to image (PIL-only)
        if anchor == "bottom":  # start y from font bottom
            w, h = self.font.getsize(text)  # text width, height
            xy[1] += 1 - h
        self.draw.text(xy, text, fill=txt_color, font=self.font)

    def fromarray(self, im):
        # Update self.im from a numpy array
        self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
        self.draw = ImageDraw.Draw(self.im)

    def result(self):
        # Return annotated image as array
        return np.asarray(self.im)


def non_max_suppression(
    prediction,
    conf_thres=0.25,
    iou_thres=0.45,
    classes=None,
    agnostic=False,
    multi_label=False,
    labels=(),
    max_det=300,
    nm=0,  # number of masks
):
    # Checks
    assert (
        0 <= conf_thres <= 1
    ), f"Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0"
    assert (
        0 <= iou_thres <= 1
    ), f"Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0"
    # YOLOv8 model in validation model, output = (inference_out, loss_out)
    if isinstance(prediction, (list, tuple)):
        prediction = prediction[0]  # select only inference output
    device = prediction.device
    mps = "mps" in device.type  # Apple MPS
    if mps:  # MPS not fully supported yet, convert tensors to CPU before NMS
        prediction = prediction.cpu()
    bs = prediction.shape[0]  # batch size
    nc = prediction.shape[1] - nm - 4  # number of classes
    mi = 4 + nc  # mask start index
    xc = prediction[:, 4:mi].amax(1) > conf_thres  # candidates

    # Settings
    # min_wh = 2  # (pixels) minimum box width and height
    max_wh = 7680  # (pixels) maximum box width and height
    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
    time_limit = 0.5 + 0.05 * bs  # seconds to quit after
    redundant = True  # require redundant detections
    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
    merge = False  # use merge-NMS

    t = time.time()
    output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        # x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = x.transpose(0, -1)[xc[xi]]  # confidence

        # Cat apriori labels if autolabelling
        if labels and len(labels[xi]):
            lb = labels[xi]
            v = torch.zeros((len(lb), nc + nm + 5), device=x.device)
            v[:, :4] = lb[:, 1:5]  # box
            v[range(len(lb)), lb[:, 0].long() + 4] = 1.0  # cls
            x = torch.cat((x, v), 0)

        # If none remain process next image
        if not x.shape[0]:
            continue

        # Detections matrix nx6 (xyxy, conf, cls)
        box, cls, mask = x.split((4, nc, nm), 1)
        # center_x, center_y, width, height) to (x1, y1, x2, y2)
        box = xywh2xyxy(box)
        if multi_label:
            i, j = (cls > conf_thres).nonzero(as_tuple=False).T
            x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1)
        else:  # best class only
            conf, j = cls.max(1, keepdim=True)
            x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]

        # Filter by class
        if classes is not None:
            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

        # Check shape
        n = x.shape[0]  # number of boxes
        if not n:  # no boxes
            continue
        # sort by confidence and remove excess boxes
        x = x[x[:, 4].argsort(descending=True)[:max_nms]]

        # Batched NMS
        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
        # boxes (offset by class), scores
        boxes, scores = x[:, :4] + c, x[:, 4]
        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
        i = i[:max_det]  # limit detections
        if merge and (1 < n < 3e3):  # Merge NMS (boxes merged using weighted mean)
            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
            weights = iou * scores[None]  # box weights
            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(
                1, keepdim=True
            )  # merged boxes
            if redundant:
                i = i[iou.sum(1) > 1]  # require redundancy

        output[xi] = x[i]
        if mps:
            output[xi] = output[xi].to(device)
        if (time.time() - t) > time_limit:
            LOGGER.warning(f"WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded")
            break  # time limit exceeded

    return output


class Colors:
    # Ultralytics color palette https://ultralytics.com/
    def __init__(self):
        # hex = matplotlib.colors.TABLEAU_COLORS.values()
        hexs = (
            "FF3838",
            "FF9D97",
            "FF701F",
            "FFB21D",
            "CFD231",
            "48F90A",
            "92CC17",
            "3DDB86",
            "1A9334",
            "00D4BB",
            "2C99A8",
            "00C2FF",
            "344593",
            "6473FF",
            "0018EC",
            "8438FF",
            "520085",
            "CB38FF",
            "FF95C8",
            "FF37C7",
        )
        self.palette = [self.hex2rgb(f"#{c}") for c in hexs]
        self.n = len(self.palette)

    def __call__(self, i, bgr=False):
        c = self.palette[int(i) % self.n]
        return (c[2], c[1], c[0]) if bgr else c

    @staticmethod
    def hex2rgb(h):  # rgb order (PIL)
        return tuple(int(h[1 + i : 1 + i + 2], 16) for i in (0, 2, 4))


colors = Colors()  # create instance for 'from utils.plots import colors'


def threaded(func):
    # Multi-threads a target function and returns thread. Usage: @threaded decorator
    def wrapper(*args, **kwargs):
        thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
        thread.start()
        return thread

    return wrapper


def plot_images(
    images,
    batch_idx,
    cls,
    bboxes,
    masks=np.zeros(0, dtype=np.uint8),
    paths=None,
    fname="images.jpg",
    names=None,
):
    # Plot image grid with labels
    if isinstance(images, torch.Tensor):
        images = images.cpu().float().numpy()
    if isinstance(cls, torch.Tensor):
        cls = cls.cpu().numpy()
    if isinstance(bboxes, torch.Tensor):
        bboxes = bboxes.cpu().numpy()
    if isinstance(masks, torch.Tensor):
        masks = masks.cpu().numpy().astype(int)
    if isinstance(batch_idx, torch.Tensor):
        batch_idx = batch_idx.cpu().numpy()

    max_size = 1920  # max image size
    max_subplots = 16  # max image subplots, i.e. 4x4
    bs, _, h, w = images.shape  # batch size, _, height, width
    bs = min(bs, max_subplots)  # limit plot images
    ns = np.ceil(bs**0.5)  # number of subplots (square)
    if np.max(images[0]) <= 1:
        images *= 255  # de-normalise (optional)

    # Build Image
    mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)  # init
    for i, im in enumerate(images):
        if i == max_subplots:  # if last batch has fewer images than we expect
            break
        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
        im = im.transpose(1, 2, 0)
        mosaic[y : y + h, x : x + w, :] = im

    # Resize (optional)
    scale = max_size / ns / max(h, w)
    if scale < 1:
        h = math.ceil(scale * h)
        w = math.ceil(scale * w)
        mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))

    # Annotate
    fs = int((h + w) * ns * 0.01)  # font size
    annotator = Annotator(
        mosaic, line_width=2, font_size=fs, pil=True, example=names
    )
    for i in range(i + 1):
        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
        annotator.rectangle(
            [x, y, x + w, y + h], None, (255, 255, 255), width=2
        )  # borders
        if paths:
            annotator.text(
                # filenames
                (x + 5, y + 5 + h),
                text=Path(paths[i]).name[:40],
                txt_color=(220, 220, 220),
            )
        if len(cls) > 0:
            idx = batch_idx == i

            boxes = xywh2xyxy(bboxes[idx, :4]).T
            classes = cls[idx].astype("int")
            labels = bboxes.shape[1] == 4  # labels if no conf column
            # check for confidence presence (label vs pred)
            conf = None if labels else bboxes[idx, 4]

            if boxes.shape[1]:
                if boxes.max() <= 1.01:  # if normalized with tolerance 0.01
                    boxes[[0, 2]] *= w  # scale to pixels
                    boxes[[1, 3]] *= h
                elif scale < 1:  # absolute coords need scale if image scales
                    boxes *= scale
            boxes[[0, 2]] += x
            boxes[[1, 3]] += y
            for j, box in enumerate(boxes.T.tolist()):
                c = classes[j]
                color = colors(c)
                c = names[c] if names else c
                if labels or conf[j] > 0.25:  # 0.25 conf thresh
                    label = f"{c}" if labels else f"{c} {conf[j]:.1f}"
                    annotator.box_label(box, label, color=color)
    annotator.im.save(fname)  # save


def output_to_target(output, max_det=300):
    # Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting
    targets = []
    for i, o in enumerate(output):
        box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
        j = torch.full((conf.shape[0], 1), i)
        targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
    targets = torch.cat(targets, 0).numpy()
    return targets[:, 0], targets[:, 1], targets[:, 2:]


def is_ascii(s=""):
    # Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
    s = str(s)  # convert list, tuple, None, etc. to str
    return len(s.encode().decode("ascii", "ignore")) == len(s)


def xyxy2xywh(x):
    """
    Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format.

    Args:
        x (np.ndarray) or (torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.
    Returns:
       y (np.ndarray) or (torch.Tensor): The bounding box coordinates in (x, y, width, height) format.
    """
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[..., 0] = (x[..., 0] + x[..., 2]) / 2  # x center
    y[..., 1] = (x[..., 1] + x[..., 3]) / 2  # y center
    y[..., 2] = x[..., 2] - x[..., 0]  # width
    y[..., 3] = x[..., 3] - x[..., 1]  # height
    return y


def xywh2xyxy(x):
    # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
    return y


def check_det_dataset(dataset, autodownload=True):
    # Download, check and/or unzip dataset if not found locally
    data = dataset
    # Download (optional)
    extract_dir = ''

    # Read yaml (optional)
    if isinstance(data, (str, Path)):
        data = yaml_load(data, append_filename=True)  # dictionary

    # Checks
    if isinstance(data['names'], (list, tuple)):  # old array format
        data['names'] = dict(enumerate(data['names']))  # convert to dict
    data['nc'] = len(data['names'])

    # Resolve paths
    path = Path(extract_dir or data.get('path') or Path(data.get('yaml_file', '')).parent)  # dataset root

    DATASETS_DIR = os.path.abspath('.')
    if not path.is_absolute():
        path = (DATASETS_DIR / path).resolve()
        data['path'] = path  # download scripts
    for k in 'train', 'val', 'test':
        if data.get(k):  # prepend path
            if isinstance(data[k], str):
                x = (path / data[k]).resolve()
                if not x.exists() and data[k].startswith('../'):
                    x = (path / data[k][3:]).resolve()
                data[k] = str(x)
            else:
                data[k] = [str((path / x).resolve()) for x in data[k]]

    # Parse yaml
    train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
    if val:
        val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])]  # val path
        if not all(x.exists() for x in val):
            msg = f"\nDataset '{dataset}' not found ⚠️, missing paths %s" % [str(x) for x in val if not x.exists()]
            if s and autodownload:
                LOGGER.warning(msg)
            else:
                raise FileNotFoundError(msg)
            t = time.time()
            if s.startswith('bash '):  # bash script
                LOGGER.info(f'Running {s} ...')
                r = os.system(s)
            else:  # python script
                r = exec(s, {'yaml': data})  # return None
            dt = f'({round(time.time() - t, 1)}s)'
            s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f"failure {dt} ❌"
            LOGGER.info(f"Dataset download {s}\n")

    return data  # dictionary


def yaml_load(file='data.yaml', append_filename=False):
    """
    Load YAML data from a file.

    Args:
        file (str, optional): File name. Default is 'data.yaml'.
        append_filename (bool): Add the YAML filename to the YAML dictionary. Default is False.

    Returns:
        dict: YAML data and file name.
    """
    with open(file, errors='ignore', encoding='utf-8') as f:
        # Add YAML filename to dict and return
        s = f.read()  # string
        if not s.isprintable():  # remove special characters
            s = re.sub(r'[^\x09\x0A\x0D\x20-\x7E\x85\xA0-\uD7FF\uE000-\uFFFD\U00010000-\U0010ffff]+', '', s)
        return {**yaml.safe_load(s), 'yaml_file': str(file)} if append_filename else yaml.safe_load(s)


class IterableSimpleNamespace(SimpleNamespace):
    """
    Iterable SimpleNamespace class to allow SimpleNamespace to be used with dict() and in for loops
    """

    def __iter__(self):
        return iter(vars(self).items())

    def __str__(self):
        return '\n'.join(f"{k}={v}" for k, v in vars(self).items())

    def get(self, key, default=None):
        return getattr(self, key, default)


def colorstr(*input):
    # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e.  colorstr('blue', 'hello world')
    *args, string = input if len(input) > 1 else ("blue", "bold", input[0])  # color arguments, string
    colors = {
        "black": "\033[30m",  # basic colors
        "red": "\033[31m",
        "green": "\033[32m",
        "yellow": "\033[33m",
        "blue": "\033[34m",
        "magenta": "\033[35m",
        "cyan": "\033[36m",
        "white": "\033[37m",
        "bright_black": "\033[90m",  # bright colors
        "bright_red": "\033[91m",
        "bright_green": "\033[92m",
        "bright_yellow": "\033[93m",
        "bright_blue": "\033[94m",
        "bright_magenta": "\033[95m",
        "bright_cyan": "\033[96m",
        "bright_white": "\033[97m",
        "end": "\033[0m",  # misc
        "bold": "\033[1m",
        "underline": "\033[4m"}
    return "".join(colors[x] for x in args) + f"{string}" + colors["end"]


def seed_worker(worker_id):
    # Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader
    worker_seed = torch.initial_seed() % 2 ** 32
    np.random.seed(worker_seed)
    random.seed(worker_seed)


def build_dataloader(cfg, batch, img_path, stride=32, rect=False, names=None, rank=-1, mode="train"):
    assert mode in ["train", "val"]
    shuffle = mode == "train"
    if cfg.rect and shuffle:
        LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False")
        shuffle = False
    dataset = YOLODataset(
        img_path=img_path,
        imgsz=cfg.imgsz,
        batch_size=batch,
        augment=mode == "train",  # augmentation
        hyp=cfg,  # TODO: probably add a get_hyps_from_cfg function
        rect=cfg.rect or rect,  # rectangular batches
        cache=cfg.cache or None,
        single_cls=cfg.single_cls or False,
        stride=int(stride),
        pad=0.0 if mode == "train" else 0.5,
        prefix=colorstr(f"{mode}: "),
        use_segments=cfg.task == "segment",
        use_keypoints=cfg.task == "keypoint",
        names=names)

    batch = min(batch, len(dataset))
    nd = torch.cuda.device_count()  # number of CUDA devices
    workers = cfg.workers if mode == "train" else cfg.workers * 2
    nw = min([os.cpu_count() // max(nd, 1), batch if batch > 1 else 0, workers])  # number of workers

    if rank == -1:
        sampler = None
    if cfg.image_weights or cfg.close_mosaic:
        loader = DataLoader
    generator = torch.Generator()
    generator.manual_seed(6148914691236517205)
    return loader(dataset=dataset,
                  batch_size=batch,
                  shuffle=shuffle and sampler is None,
                  num_workers=nw,
                  sampler=sampler,
                  pin_memory=PIN_MEMORY,
                  collate_fn=getattr(dataset, "collate_fn", None),
                  worker_init_fn=seed_worker,
                  generator=generator), dataset


class BaseDataset(Dataset):
    """Base Dataset.
    Args:
        img_path (str): image path.
        pipeline (dict): a dict of image transforms.
        label_path (str): label path, this can also be an ann_file or other custom label path.
    """

    def __init__(
        self,
        img_path,
        imgsz=640,
        cache=False,
        augment=True,
        hyp=None,
        prefix="",
        rect=False,
        batch_size=None,
        stride=32,
        pad=0.5,
        single_cls=False,
    ):
        super().__init__()
        self.img_path = img_path
        self.imgsz = imgsz
        self.augment = augment
        self.single_cls = single_cls
        self.prefix = prefix
        self.im_files = self.get_img_files(self.img_path)
        self.labels = self.get_labels()
        self.ni = len(self.labels)

        # rect stuff
        self.rect = rect
        self.batch_size = batch_size
        self.stride = stride
        self.pad = pad
        if self.rect:
            assert self.batch_size is not None
            self.set_rectangle()

        # cache stuff
        self.ims = [None] * self.ni
        self.npy_files = [Path(f).with_suffix(".npy") for f in self.im_files]
        if cache:
            self.cache_images(cache)

        # transforms
        self.transforms = self.build_transforms(hyp=hyp)

    def get_img_files(self, img_path):
        """Read image files."""
        try:
            f = []  # image files
            for p in img_path if isinstance(img_path, list) else [img_path]:
                p = Path(p)  # os-agnostic
                if p.is_dir():  # dir
                    f += glob.glob(str(p / "**" / "*.*"), recursive=True)
                    # f = list(p.rglob('*.*'))  # pathlib
                elif p.is_file():  # file
                    with open(p) as t:
                        t = t.read().strip().splitlines()
                        parent = str(p.parent) + os.sep
                        f += [x.replace("./", parent) if x.startswith("./") else x for x in t]  # local to global path
                        # f += [p.parent / x.lstrip(os.sep) for x in t]  # local to global path (pathlib)
                else:
                    raise FileNotFoundError(f"{self.prefix}{p} does not exist")
            im_files = sorted(x.replace("/", os.sep) for x in f if x.split(".")[-1].lower() in IMG_FORMATS)
            # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS])  # pathlib
            assert im_files, f"{self.prefix}No images found"
        except Exception as e:
            raise FileNotFoundError(f"{self.prefix}Error loading data from {img_path}\n") from e
        return im_files

    def load_image(self, i):
        # Loads 1 image from dataset index 'i', returns (im, resized hw)
        im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i]
        if im is None:  # not cached in RAM
            if fn.exists():  # load npy
                im = np.load(fn)
            else:  # read image
                im = cv2.imread(f)  # BGR
                if im is None:
                    raise FileNotFoundError(f"Image Not Found {f}")
            h0, w0 = im.shape[:2]  # orig hw
            r = self.imgsz / max(h0, w0)  # ratio
            if r != 1:  # if sizes are not equal
                interp = cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA
                im = cv2.resize(im, (math.ceil(w0 * r), math.ceil(h0 * r)), interpolation=interp)
            return im, (h0, w0), im.shape[:2]  # im, hw_original, hw_resized
        return self.ims[i], self.im_hw0[i], self.im_hw[i]  # im, hw_original, hw_resized

    def cache_images(self, cache):
        # cache images to memory or disk
        gb = 0  # Gigabytes of cached images
        self.im_hw0, self.im_hw = [None] * self.ni, [None] * self.ni
        fcn = self.cache_images_to_disk if cache == "disk" else self.load_image
        with ThreadPool(NUM_THREADS) as pool:
            results = pool.imap(fcn, range(self.ni))
            pbar = tqdm(enumerate(results), total=self.ni, bar_format=TQDM_BAR_FORMAT)
            for i, x in pbar:
                if cache == "disk":
                    gb += self.npy_files[i].stat().st_size
                else:  # 'ram'
                    self.ims[i], self.im_hw0[i], self.im_hw[i] = x  # im, hw_orig, hw_resized = load_image(self, i)
                    gb += self.ims[i].nbytes
                pbar.desc = f"{self.prefix}Caching images ({gb / 1E9:.1f}GB {cache})"
            pbar.close()

    def cache_images_to_disk(self, i):
        # Saves an image as an *.npy file for faster loading
        f = self.npy_files[i]
        if not f.exists():
            np.save(f.as_posix(), cv2.imread(self.im_files[i]))

    def set_rectangle(self):
        bi = np.floor(np.arange(self.ni) / self.batch_size).astype(int)  # batch index
        nb = bi[-1] + 1  # number of batches

        s = np.array([x.pop("shape") for x in self.labels])  # hw
        ar = s[:, 0] / s[:, 1]  # aspect ratio
        irect = ar.argsort()
        self.im_files = [self.im_files[i] for i in irect]
        self.labels = [self.labels[i] for i in irect]
        ar = ar[irect]

        # Set training image shapes
        shapes = [[1, 1]] * nb
        for i in range(nb):
            ari = ar[bi == i]
            mini, maxi = ari.min(), ari.max()
            if maxi < 1:
                shapes[i] = [maxi, 1]
            elif mini > 1:
                shapes[i] = [1, 1 / mini]

        self.batch_shapes = np.ceil(np.array(shapes) * self.imgsz / self.stride + self.pad).astype(int) * self.stride
        self.batch = bi  # batch index of image

    def __getitem__(self, index):
        return self.transforms(self.get_label_info(index))

    def get_label_info(self, index):
        label = self.labels[index].copy()
        label.pop("shape", None)  # shape is for rect, remove it
        label["img"], label["ori_shape"], label["resized_shape"] = self.load_image(index)
        label["ratio_pad"] = (
            label["resized_shape"][0] / label["ori_shape"][0],
            label["resized_shape"][1] / label["ori_shape"][1],
        )  # for evaluation
        if self.rect:
            label["rect_shape"] = self.batch_shapes[self.batch[index]]
        label = self.update_labels_info(label)
        return label

    def __len__(self):
        return len(self.labels)

    def update_labels_info(self, label):
        """custom your label format here"""
        return label

    def build_transforms(self, hyp=None):
        """Users can custom augmentations here
        like:
            if self.augment:
                # training transforms
                return Compose([])
            else:
                # val transforms
                return Compose([])
        """
        raise NotImplementedError

    def get_labels(self):
        """Users can custom their own format here.
        Make sure your output is a list with each element like below:
            dict(
                im_file=im_file,
                shape=shape,  # format: (height, width)
                cls=cls,
                bboxes=bboxes, # xywh
                segments=segments,  # xy
                keypoints=keypoints, # xy
                normalized=True, # or False
                bbox_format="xyxy",  # or xywh, ltwh
            )
        """
        raise NotImplementedError


def img2label_paths(img_paths):
    # Define label paths as a function of image paths
    sa, sb = f"{os.sep}images{os.sep}", f"{os.sep}labels{os.sep}"  # /images/, /labels/ substrings
    return [sb.join(x.rsplit(sa, 1)).rsplit(".", 1)[0] + ".txt" for x in img_paths]


def get_hash(paths):
    # Returns a single hash value of a list of paths (files or dirs)
    size = sum(os.path.getsize(p) for p in paths if os.path.exists(p))  # sizes
    h = hashlib.md5(str(size).encode())  # hash sizes
    h.update("".join(paths).encode())  # hash paths
    return h.hexdigest()  # return hash


class Compose:

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, data):
        for t in self.transforms:
            data = t(data)
        return data

    def append(self, transform):
        self.transforms.append(transform)

    def tolist(self):
        return self.transforms

    def __repr__(self):
        format_string = f"{self.__class__.__name__}("
        for t in self.transforms:
            format_string += "\n"
            format_string += f"    {t}"
        format_string += "\n)"
        return format_string


class Format:

    def __init__(self,
                 bbox_format="xywh",
                 normalize=True,
                 return_mask=False,
                 return_keypoint=False,
                 mask_ratio=4,
                 mask_overlap=True,
                 batch_idx=True):
        self.bbox_format = bbox_format
        self.normalize = normalize
        self.return_mask = return_mask  # set False when training detection only
        self.return_keypoint = return_keypoint
        self.mask_ratio = mask_ratio
        self.mask_overlap = mask_overlap
        self.batch_idx = batch_idx  # keep the batch indexes

    def __call__(self, labels):
        img = labels.pop("img")
        h, w = img.shape[:2]
        cls = labels.pop("cls")
        instances = labels.pop("instances")
        instances.convert_bbox(format=self.bbox_format)
        instances.denormalize(w, h)
        nl = len(instances)

        if self.normalize:
            instances.normalize(w, h)
        labels["img"] = self._format_img(img)
        labels["cls"] = torch.from_numpy(cls) if nl else torch.zeros(nl)
        labels["bboxes"] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4))
        if self.return_keypoint:
            labels["keypoints"] = torch.from_numpy(instances.keypoints) if nl else torch.zeros((nl, 17, 2))
        # then we can use collate_fn
        if self.batch_idx:
            labels["batch_idx"] = torch.zeros(nl)
        return labels

    def _format_img(self, img):
        if len(img.shape) < 3:
            img = np.expand_dims(img, -1)
        img = np.ascontiguousarray(img.transpose(2, 0, 1)[::-1])
        img = torch.from_numpy(img)
        return img

class Bboxes:
    """Now only numpy is supported"""

    def __init__(self, bboxes, format="xyxy") -> None:
        assert format in _formats
        bboxes = bboxes[None, :] if bboxes.ndim == 1 else bboxes
        assert bboxes.ndim == 2
        assert bboxes.shape[1] == 4
        self.bboxes = bboxes
        self.format = format
        # self.normalized = normalized

    def convert(self, format):
        assert format in _formats
        if self.format == format:
            return
        elif self.format == "xyxy":
            if format == "xywh":
                bboxes = xyxy2xywh(self.bboxes)
        elif self.format == "xywh":
            if format == "xyxy":
                bboxes = xywh2xyxy(self.bboxes)
        self.bboxes = bboxes
        self.format = format

    def areas(self):
        self.convert("xyxy")
        return (self.bboxes[:, 2] - self.bboxes[:, 0]) * (self.bboxes[:, 3] - self.bboxes[:, 1])

    def mul(self, scale):
        """
        Args:
            scale (tuple | List | int): the scale for four coords.
        """
        assert isinstance(scale, (tuple, list))
        assert len(scale) == 4
        self.bboxes[:, 0] *= scale[0]
        self.bboxes[:, 1] *= scale[1]
        self.bboxes[:, 2] *= scale[2]
        self.bboxes[:, 3] *= scale[3]

    def add(self, offset):
        """
        Args:
            offset (tuple | List | int): the offset for four coords.
        """
        assert isinstance(offset, (tuple, list))
        assert len(offset) == 4
        self.bboxes[:, 0] += offset[0]
        self.bboxes[:, 1] += offset[1]
        self.bboxes[:, 2] += offset[2]
        self.bboxes[:, 3] += offset[3]

    def __len__(self):
        return len(self.bboxes)

    @classmethod
    def concatenate(cls, boxes_list: List["Bboxes"], axis=0) -> "Bboxes":
        """
        Concatenates a list of Boxes into a single Bboxes

        Arguments:
            boxes_list (list[Bboxes])

        Returns:
            Bboxes: the concatenated Boxes
        """
        assert isinstance(boxes_list, (list, tuple))
        if not boxes_list:
            return cls(np.empty(0))
        assert all(isinstance(box, Bboxes) for box in boxes_list)

        if len(boxes_list) == 1:
            return boxes_list[0]
        return cls(np.concatenate([b.bboxes for b in boxes_list], axis=axis))

    def __getitem__(self, index) -> "Bboxes":
        """
        Args:
            index: int, slice, or a BoolArray

        Returns:
            Bboxes: Create a new :class:`Bboxes` by indexing.
        """
        if isinstance(index, int):
            return Bboxes(self.bboxes[index].view(1, -1))
        b = self.bboxes[index]
        assert b.ndim == 2, f"Indexing on Bboxes with {index} failed to return a matrix!"
        return Bboxes(b)


def resample_segments(segments, n=1000):
    """
    Inputs a list of segments (n,2) and returns a list of segments (n,2) up-sampled to n points each.

    Args:
      segments (list): a list of (n,2) arrays, where n is the number of points in the segment.
      n (int): number of points to resample the segment to. Defaults to 1000

    Returns:
      segments (list): the resampled segments.
    """
    for i, s in enumerate(segments):
        s = np.concatenate((s, s[0:1, :]), axis=0)
        x = np.linspace(0, len(s) - 1, n)
        xp = np.arange(len(s))
        segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T  # segment xy
    return segments


class Instances:

    def __init__(self, bboxes, segments=None, keypoints=None, bbox_format="xywh", normalized=True) -> None:
        """
        Args:
            bboxes (ndarray): bboxes with shape [N, 4].
            segments (list | ndarray): segments.
            keypoints (ndarray): keypoints with shape [N, 17, 2].
        """
        if segments is None:
            segments = []
        self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format)
        self.keypoints = keypoints
        self.normalized = normalized

        if len(segments) > 0:
            # list[np.array(1000, 2)] * num_samples
            segments = resample_segments(segments)
            # (N, 1000, 2)
            segments = np.stack(segments, axis=0)
        else:
            segments = np.zeros((0, 1000, 2), dtype=np.float32)
        self.segments = segments

    def convert_bbox(self, format):
        self._bboxes.convert(format=format)

    def bbox_areas(self):
        self._bboxes.areas()

    def scale(self, scale_w, scale_h, bbox_only=False):
        """this might be similar with denormalize func but without normalized sign"""
        self._bboxes.mul(scale=(scale_w, scale_h, scale_w, scale_h))
        if bbox_only:
            return
        self.segments[..., 0] *= scale_w
        self.segments[..., 1] *= scale_h
        if self.keypoints is not None:
            self.keypoints[..., 0] *= scale_w
            self.keypoints[..., 1] *= scale_h

    def denormalize(self, w, h):
        if not self.normalized:
            return
        self._bboxes.mul(scale=(w, h, w, h))
        self.segments[..., 0] *= w
        self.segments[..., 1] *= h
        if self.keypoints is not None:
            self.keypoints[..., 0] *= w
            self.keypoints[..., 1] *= h
        self.normalized = False

    def normalize(self, w, h):
        if self.normalized:
            return
        self._bboxes.mul(scale=(1 / w, 1 / h, 1 / w, 1 / h))
        self.segments[..., 0] /= w
        self.segments[..., 1] /= h
        if self.keypoints is not None:
            self.keypoints[..., 0] /= w
            self.keypoints[..., 1] /= h
        self.normalized = True

    def add_padding(self, padw, padh):
        # handle rect and mosaic situation
        assert not self.normalized, "you should add padding with absolute coordinates."
        self._bboxes.add(offset=(padw, padh, padw, padh))
        self.segments[..., 0] += padw
        self.segments[..., 1] += padh
        if self.keypoints is not None:
            self.keypoints[..., 0] += padw
            self.keypoints[..., 1] += padh

    def __getitem__(self, index) -> "Instances":
        """
        Args:
            index: int, slice, or a BoolArray

        Returns:
            Instances: Create a new :class:`Instances` by indexing.
        """
        segments = self.segments[index] if len(self.segments) else self.segments
        keypoints = self.keypoints[index] if self.keypoints is not None else None
        bboxes = self.bboxes[index]
        bbox_format = self._bboxes.format
        return Instances(
            bboxes=bboxes,
            segments=segments,
            keypoints=keypoints,
            bbox_format=bbox_format,
            normalized=self.normalized,
        )

    def flipud(self, h):
        if self._bboxes.format == "xyxy":
            y1 = self.bboxes[:, 1].copy()
            y2 = self.bboxes[:, 3].copy()
            self.bboxes[:, 1] = h - y2
            self.bboxes[:, 3] = h - y1
        else:
            self.bboxes[:, 1] = h - self.bboxes[:, 1]
        self.segments[..., 1] = h - self.segments[..., 1]
        if self.keypoints is not None:
            self.keypoints[..., 1] = h - self.keypoints[..., 1]

    def fliplr(self, w):
        if self._bboxes.format == "xyxy":
            x1 = self.bboxes[:, 0].copy()
            x2 = self.bboxes[:, 2].copy()
            self.bboxes[:, 0] = w - x2
            self.bboxes[:, 2] = w - x1
        else:
            self.bboxes[:, 0] = w - self.bboxes[:, 0]
        self.segments[..., 0] = w - self.segments[..., 0]
        if self.keypoints is not None:
            self.keypoints[..., 0] = w - self.keypoints[..., 0]

    def clip(self, w, h):
        ori_format = self._bboxes.format
        self.convert_bbox(format="xyxy")
        self.bboxes[:, [0, 2]] = self.bboxes[:, [0, 2]].clip(0, w)
        self.bboxes[:, [1, 3]] = self.bboxes[:, [1, 3]].clip(0, h)
        if ori_format != "xyxy":
            self.convert_bbox(format=ori_format)
        self.segments[..., 0] = self.segments[..., 0].clip(0, w)
        self.segments[..., 1] = self.segments[..., 1].clip(0, h)
        if self.keypoints is not None:
            self.keypoints[..., 0] = self.keypoints[..., 0].clip(0, w)
            self.keypoints[..., 1] = self.keypoints[..., 1].clip(0, h)

    def update(self, bboxes, segments=None, keypoints=None):
        new_bboxes = Bboxes(bboxes, format=self._bboxes.format)
        self._bboxes = new_bboxes
        if segments is not None:
            self.segments = segments
        if keypoints is not None:
            self.keypoints = keypoints

    def __len__(self):
        return len(self.bboxes)

    @classmethod
    def concatenate(cls, instances_list: List["Instances"], axis=0) -> "Instances":
        """
        Concatenates a list of Boxes into a single Bboxes

        Arguments:
            instances_list (list[Bboxes])
            axis

        Returns:
            Boxes: the concatenated Boxes
        """
        assert isinstance(instances_list, (list, tuple))
        if not instances_list:
            return cls(np.empty(0))
        assert all(isinstance(instance, Instances) for instance in instances_list)

        if len(instances_list) == 1:
            return instances_list[0]

        use_keypoint = instances_list[0].keypoints is not None
        bbox_format = instances_list[0]._bboxes.format
        normalized = instances_list[0].normalized

        cat_boxes = np.concatenate([ins.bboxes for ins in instances_list], axis=axis)
        cat_segments = np.concatenate([b.segments for b in instances_list], axis=axis)
        cat_keypoints = np.concatenate([b.keypoints for b in instances_list], axis=axis) if use_keypoint else None
        return cls(cat_boxes, cat_segments, cat_keypoints, bbox_format, normalized)

    @property
    def bboxes(self):
        return self._bboxes.bboxes


def is_dir_writeable(dir_path: Union[str, Path]) -> bool:
    """
    Check if a directory is writeable.

    Args:
        dir_path (str) or (Path): The path to the directory.

    Returns:
        bool: True if the directory is writeable, False otherwise.
    """
    try:
        with tempfile.TemporaryFile(dir=dir_path):
            pass
        return True
    except OSError:
        return False


class YOLODataset(BaseDataset):
    cache_version = '1.0.1'  # dataset labels *.cache version, >= 1.0.0 for YOLOv8
    rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]
    """YOLO Dataset.
    Args:
        img_path (str): image path.
        prefix (str): prefix.
    """

    def __init__(self,
                 img_path,
                 imgsz=640,
                 cache=False,
                 augment=True,
                 hyp=None,
                 prefix="",
                 rect=False,
                 batch_size=None,
                 stride=32,
                 pad=0.0,
                 single_cls=False,
                 use_segments=False,
                 use_keypoints=False,
                 names=None):
        self.use_segments = use_segments
        self.use_keypoints = use_keypoints
        self.names = names
        assert not (self.use_segments and self.use_keypoints), "Can not use both segments and keypoints."
        super().__init__(img_path, imgsz, cache, augment, hyp, prefix, rect, batch_size, stride, pad, single_cls)

    def cache_labels(self, path=Path("./labels.cache")):
        # Cache dataset labels, check images and read shapes
        if path.exists():
            path.unlink()  # remove *.cache file if exists
        x = {"labels": []}
        nm, nf, ne, nc, msgs = 0, 0, 0, 0, []  # number missing, found, empty, corrupt, messages
        desc = f"{self.prefix}Scanning {path.parent / path.stem}..."
        total = len(self.im_files)
        with ThreadPool(NUM_THREADS) as pool:
            results = pool.imap(func=verify_image_label,
                                iterable=zip(self.im_files, self.label_files, repeat(self.prefix),
                                             repeat(self.use_keypoints), repeat(len(self.names))))
            pbar = tqdm(results, desc=desc, total=total, bar_format=TQDM_BAR_FORMAT)
            for im_file, lb, shape, segments, keypoint, nm_f, nf_f, ne_f, nc_f, msg in pbar:
                nm += nm_f
                nf += nf_f
                ne += ne_f
                nc += nc_f
                if im_file:
                    x["labels"].append(
                        dict(
                            im_file=im_file,
                            shape=shape,
                            cls=lb[:, 0:1],  # n, 1
                            bboxes=lb[:, 1:],  # n, 4
                            segments=segments,
                            keypoints=keypoint,
                            normalized=True,
                            bbox_format="xywh"))
                if msg:
                    msgs.append(msg)
                pbar.desc = f"{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt"
            pbar.close()

        if msgs:
            LOGGER.info("\n".join(msgs))
        x["hash"] = get_hash(self.label_files + self.im_files)
        x["results"] = nf, nm, ne, nc, len(self.im_files)
        x["msgs"] = msgs  # warnings
        x["version"] = self.cache_version  # cache version
        self.im_files = [lb["im_file"] for lb in x["labels"]]  # update im_files
        if is_dir_writeable(path.parent):
            np.save(str(path), x)  # save cache for next time
            path.with_suffix(".cache.npy").rename(path)  # remove .npy suffix
            LOGGER.info(f"{self.prefix}New cache created: {path}")
        else:
            LOGGER.warning(f"{self.prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable")  # not writeable
        return x

    def get_labels(self):
        self.label_files = img2label_paths(self.im_files)
        cache_path = Path(self.label_files[0]).parent.with_suffix(".cache")
        try:
            cache, exists = np.load(str(cache_path), allow_pickle=True).item(), True  # load dict
            assert cache["version"] == self.cache_version  # matches current version
            assert cache["hash"] == get_hash(self.label_files + self.im_files)  # identical hash
        except (FileNotFoundError, AssertionError, AttributeError):
            cache, exists = self.cache_labels(cache_path), False  # run cache ops

        # Display cache
        nf, nm, ne, nc, n = cache.pop("results")  # found, missing, empty, corrupt, total
        if exists:
            d = f"Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt"
            tqdm(None, desc=self.prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT)  # display cache results
            if cache["msgs"]:
                LOGGER.info("\n".join(cache["msgs"]))  # display warnings

        # Read cache
        [cache.pop(k) for k in ("hash", "version", "msgs")]  # remove items
        labels = cache["labels"]

        # Check if the dataset is all boxes or all segments
        len_cls = sum(len(lb["cls"]) for lb in labels)
        len_boxes = sum(len(lb["bboxes"]) for lb in labels)
        len_segments = sum(len(lb["segments"]) for lb in labels)
        if len_segments and len_boxes != len_segments:
            LOGGER.warning(
                f"WARNING ⚠️ Box and segment counts should be equal, but got len(segments) = {len_segments}, "
                f"len(boxes) = {len_boxes}. To resolve this only boxes will be used and all segments will be removed. "
                "To avoid this please supply either a detect or segment dataset, not a detect-segment mixed dataset.")
            for lb in labels:
                lb["segments"] = []
        return labels

    # TODO: use hyp config to set all these augmentations
    def build_transforms(self, hyp=None):
        transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), scaleup=False)])
        transforms.append(
            Format(bbox_format="xywh",
                   normalize=True,
                   return_mask=self.use_segments,
                   return_keypoint=self.use_keypoints,
                   batch_idx=True,
                   mask_ratio=hyp.mask_ratio,
                   mask_overlap=hyp.overlap_mask))
        return transforms

    def close_mosaic(self, hyp):
        hyp.mosaic = 0.0  # set mosaic ratio=0.0
        hyp.copy_paste = 0.0  # keep the same behavior as previous v8 close-mosaic
        hyp.mixup = 0.0  # keep the same behavior as previous v8 close-mosaic
        self.transforms = self.build_transforms(hyp)

    def update_labels_info(self, label):
        """custom your label format here"""
        # NOTE: cls is not with bboxes now, classification and semantic segmentation need an independent cls label
        # we can make it also support classification and semantic segmentation by add or remove some dict keys there.
        bboxes = label.pop("bboxes")
        segments = label.pop("segments")
        keypoints = label.pop("keypoints", None)
        bbox_format = label.pop("bbox_format")
        normalized = label.pop("normalized")
        label["instances"] = Instances(bboxes, segments, keypoints, bbox_format=bbox_format, normalized=normalized)
        return label

    @staticmethod
    def collate_fn(batch):
        new_batch = {}
        keys = batch[0].keys()
        values = list(zip(*[list(b.values()) for b in batch]))
        for i, k in enumerate(keys):
            value = values[i]
            if k == "img":
                value = torch.stack(value, 0)
            if k in ["masks", "keypoints", "bboxes", "cls"]:
                value = torch.cat(value, 0)
            new_batch[k] = value
        new_batch["batch_idx"] = list(new_batch["batch_idx"])
        for i in range(len(new_batch["batch_idx"])):
            new_batch["batch_idx"][i] += i  # add target image index for build_targets()
        new_batch["batch_idx"] = torch.cat(new_batch["batch_idx"], 0)
        return new_batch


class DFL(nn.Module):
    # Integral module of Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
    def __init__(self, c1=16):
        super().__init__()
        self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
        x = torch.arange(c1, dtype=torch.float)
        self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
        self.c1 = c1

    def forward(self, x):
        b, c, a = x.shape  # batch, channels, anchors
        return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(
            b, 4, a
        )


def dist2bbox(distance, anchor_points, xywh=True, dim=-1):
    """Transform distance(ltrb) to box(xywh or xyxy)."""
    lt, rb = torch.split(distance, 2, dim)
    x1y1 = anchor_points - lt
    x2y2 = anchor_points + rb
    if xywh:
        c_xy = (x1y1 + x2y2) / 2
        wh = x2y2 - x1y1
        return torch.cat((c_xy, wh), dim)  # xywh bbox
    return torch.cat((x1y1, x2y2), dim)  # xyxy bbox


def post_process(x):
    dfl = DFL(16)
    anchors = torch.tensor(
        np.load(
            "./anchors.npy",
            allow_pickle=True,
        )
    )
    strides = torch.tensor(
        np.load(
            "./strides.npy",
            allow_pickle=True,
        )
    )
    box, cls = torch.cat([xi.view(x[0].shape[0], 144, -1) for xi in x], 2).split(
        (16 * 4, 80), 1
    )
    dbox = dist2bbox(dfl(box), anchors.unsqueeze(0), xywh=True, dim=1) * strides
    y = torch.cat((dbox, cls.sigmoid()), 1)
    return y, x


def smooth(y, f=0.05):
    # Box filter of fraction f
    nf = round(len(y) * f * 2) // 2 + 1  # number of filter elements (must be odd)
    p = np.ones(nf // 2)  # ones padding
    yp = np.concatenate((p * y[0], y, p * y[-1]), 0)  # y padded
    return np.convolve(yp, np.ones(nf) / nf, mode='valid')  # y-smoothed


def compute_ap(recall, precision):
    """ Compute the average precision, given the recall and precision curves
    # Arguments
        recall:    The recall curve (list)
        precision: The precision curve (list)
    # Returns
        Average precision, precision curve, recall curve
    """

    # Append sentinel values to beginning and end
    mrec = np.concatenate(([0.0], recall, [1.0]))
    mpre = np.concatenate(([1.0], precision, [0.0]))

    # Compute the precision envelope
    mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))

    # Integrate area under curve
    method = 'interp'  # methods: 'continuous', 'interp'
    if method == 'interp':
        x = np.linspace(0, 1, 101)  # 101-point interp (COCO)
        ap = np.trapz(np.interp(x, mrec, mpre), x)  # integrate
    else:  # 'continuous'
        i = np.where(mrec[1:] != mrec[:-1])[0]  # points where x-axis (recall) changes
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])  # area under curve

    return ap, mpre, mrec


def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir=Path(), names=(), eps=1e-16, prefix=""):
    """ Compute the average precision, given the recall and precision curves.
    Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
    # Arguments
        tp:  True positives (nparray, nx1 or nx10).
        conf:  Objectness value from 0-1 (nparray).
        pred_cls:  Predicted object classes (nparray).
        target_cls:  True object classes (nparray).
        plot:  Plot precision-recall curve at mAP@0.5
        save_dir:  Plot save directory
    # Returns
        The average precision as computed in py-faster-rcnn.
    """

    # Sort by objectness
    i = np.argsort(-conf)
    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]

    # Find unique classes
    unique_classes, nt = np.unique(target_cls, return_counts=True)
    nc = unique_classes.shape[0]  # number of classes, number of detections

    # Create Precision-Recall curve and compute AP for each class
    px, py = np.linspace(0, 1, 1000), []  # for plotting
    ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
    for ci, c in enumerate(unique_classes):
        i = pred_cls == c
        n_l = nt[ci]  # number of labels
        n_p = i.sum()  # number of predictions
        if n_p == 0 or n_l == 0:
            continue

        # Accumulate FPs and TPs
        fpc = (1 - tp[i]).cumsum(0)
        tpc = tp[i].cumsum(0)

        # Recall
        recall = tpc / (n_l + eps)  # recall curve
        r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0)  # negative x, xp because xp decreases

        # Precision
        precision = tpc / (tpc + fpc)  # precision curve
        p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1)  # p at pr_score

        # AP from recall-precision curve
        for j in range(tp.shape[1]):
            ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
            if plot and j == 0:
                py.append(np.interp(px, mrec, mpre))  # precision at mAP@0.5

    # Compute F1 (harmonic mean of precision and recall)
    f1 = 2 * p * r / (p + r + eps)
    names = [v for k, v in names.items() if k in unique_classes]  # list: only classes that have data
    names = dict(enumerate(names))  # to dict

    i = smooth(f1.mean(0), 0.1).argmax()  # max F1 index
    p, r, f1 = p[:, i], r[:, i], f1[:, i]
    tp = (r * nt).round()  # true positives
    fp = (tp / (p + eps) - tp).round()  # false positives
    return tp, fp, p, r, f1, ap, unique_classes.astype(int)


class Metric:

    def __init__(self) -> None:
        self.p = []  # (nc, )
        self.r = []  # (nc, )
        self.f1 = []  # (nc, )
        self.all_ap = []  # (nc, 10)
        self.ap_class_index = []  # (nc, )
        self.nc = 0

    @property
    def ap50(self):
        """AP@0.5 of all classes.
        Return:
            (nc, ) or [].
        """
        return self.all_ap[:, 0] if len(self.all_ap) else []

    @property
    def ap(self):
        """AP@0.5:0.95
        Return:
            (nc, ) or [].
        """
        return self.all_ap.mean(1) if len(self.all_ap) else []

    @property
    def mp(self):
        """mean precision of all classes.
        Return:
            float.
        """
        return self.p.mean() if len(self.p) else 0.0

    @property
    def mr(self):
        """mean recall of all classes.
        Return:
            float.
        """
        return self.r.mean() if len(self.r) else 0.0

    @property
    def map50(self):
        """Mean AP@0.5 of all classes.
        Return:
            float.
        """
        return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0

    @property
    def map75(self):
        """Mean AP@0.75 of all classes.
        Return:
            float.
        """
        return self.all_ap[:, 5].mean() if len(self.all_ap) else 0.0

    @property
    def map(self):
        """Mean AP@0.5:0.95 of all classes.
        Return:
            float.
        """
        return self.all_ap.mean() if len(self.all_ap) else 0.0

    def mean_results(self):
        """Mean of results, return mp, mr, map50, map"""
        return [self.mp, self.mr, self.map50, self.map]

    def class_result(self, i):
        """class-aware result, return p[i], r[i], ap50[i], ap[i]"""
        return self.p[i], self.r[i], self.ap50[i], self.ap[i]

    @property
    def maps(self):
        """mAP of each class"""
        maps = np.zeros(self.nc) + self.map
        for i, c in enumerate(self.ap_class_index):
            maps[c] = self.ap[i]
        return maps

    def fitness(self):
        # Model fitness as a weighted combination of metrics
        w = [0.0, 0.0, 0.1, 0.9]  # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
        return (np.array(self.mean_results()) * w).sum()

    def update(self, results):
        """
        Args:
            results: tuple(p, r, ap, f1, ap_class)
        """
        self.p, self.r, self.f1, self.all_ap, self.ap_class_index = results


class DetMetrics:

    def __init__(self, save_dir=Path("."), plot=False, names=()) -> None:
        self.save_dir = save_dir
        self.plot = plot
        self.names = names
        self.box = Metric()

    def process(self, tp, conf, pred_cls, target_cls):
        results = ap_per_class(tp, conf, pred_cls, target_cls, plot=self.plot, save_dir=self.save_dir,
                               names=self.names)[2:]
        self.box.nc = len(self.names)
        self.box.update(results)

    @property
    def keys(self):
        return ["metrics/precision(B)", "metrics/recall(B)", "metrics/mAP50(B)", "metrics/mAP50-95(B)"]

    def mean_results(self):
        return self.box.mean_results()

    def class_result(self, i):
        return self.box.class_result(i)

    @property
    def maps(self):
        return self.box.maps

    @property
    def fitness(self):
        return self.box.fitness()

    @property
    def ap_class_index(self):
        return self.box.ap_class_index

    @property
    def results_dict(self):
        return dict(zip(self.keys + ["fitness"], self.mean_results() + [self.fitness]))


def increment_path(path, exist_ok=False, sep='', mkdir=False):
    """
    Increments a file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.

    If the path exists and exist_ok is not set to True, the path will be incremented by appending a number and sep to
    the end of the path. If the path is a file, the file extension will be preserved. If the path is a directory, the
    number will be appended directly to the end of the path. If mkdir is set to True, the path will be created as a
    directory if it does not already exist.

    Args:
    path (str or pathlib.Path): Path to increment.
    exist_ok (bool, optional): If True, the path will not be incremented and will be returned as-is. Defaults to False.
    sep (str, optional): Separator to use between the path and the incrementation number. Defaults to an empty string.
    mkdir (bool, optional): If True, the path will be created as a directory if it does not exist. Defaults to False.

    Returns:
    pathlib.Path: Incremented path.
    """
    path = Path(path)  # os-agnostic
    if path.exists() and not exist_ok:
        path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '')

        # Method 1
        for n in range(2, 9999):
            p = f'{path}{sep}{n}{suffix}'  # increment path
            if not os.path.exists(p):  #
                break
        path = Path(p)

    if mkdir:
        path.mkdir(parents=True, exist_ok=True)  # make directory

    return path


def cfg2dict(cfg):
    """
    Convert a configuration object to a dictionary.

    This function converts a configuration object to a dictionary, whether it is a file path, a string, or a SimpleNamespace object.

    Inputs:
        cfg (str) or (Path) or (SimpleNamespace): Configuration object to be converted to a dictionary.

    Returns:
        cfg (dict): Configuration object in dictionary format.
    """
    if isinstance(cfg, (str, Path)):
        cfg = yaml_load(cfg)  # load dict
    elif isinstance(cfg, SimpleNamespace):
        cfg = vars(cfg)  # convert to dict
    return cfg


def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = None, overrides: Dict = None):
    """
    Load and merge configuration data from a file or dictionary.

    Args:
        cfg (str) or (Path) or (Dict) or (SimpleNamespace): Configuration data.
        overrides (str) or (Dict), optional: Overrides in the form of a file name or a dictionary. Default is None.

    Returns:
        (SimpleNamespace): Training arguments namespace.
    """
    cfg = cfg2dict(cfg)

    # Merge overrides
    if overrides:
        overrides = cfg2dict(overrides)
        cfg = {**cfg, **overrides}  # merge cfg and overrides dicts (prefer overrides)

    # Special handling for numeric project/names
    for k in 'project', 'name':
        if k in cfg and isinstance(cfg[k], (int, float)):
            cfg[k] = str(cfg[k])

    # Type and Value checks
    for k, v in cfg.items():
        if v is not None:  # None values may be from optional args
            if k in CFG_FLOAT_KEYS and not isinstance(v, (int, float)):
                raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
                                f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')")
            elif k in CFG_FRACTION_KEYS:
                if not isinstance(v, (int, float)):
                    raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
                                    f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')")
                if not (0.0 <= v <= 1.0):
                    raise ValueError(f"'{k}={v}' is an invalid value. "
                                     f"Valid '{k}' values are between 0.0 and 1.0.")
            elif k in CFG_INT_KEYS and not isinstance(v, int):
                raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
                                f"'{k}' must be an int (i.e. '{k}=0')")
            elif k in CFG_BOOL_KEYS and not isinstance(v, bool):
                raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
                                f"'{k}' must be a bool (i.e. '{k}=True' or '{k}=False')")

    # Return instance
    return IterableSimpleNamespace(**cfg)


def clip_boxes(boxes, shape):
    """
    It takes a list of bounding boxes and a shape (height, width) and clips the bounding boxes to the
    shape

    Args:
      boxes (torch.Tensor): the bounding boxes to clip
      shape (tuple): the shape of the image
    """
    if isinstance(boxes, torch.Tensor):  # faster individually
        boxes[..., 0].clamp_(0, shape[1])  # x1
        boxes[..., 1].clamp_(0, shape[0])  # y1
        boxes[..., 2].clamp_(0, shape[1])  # x2
        boxes[..., 3].clamp_(0, shape[0])  # y2
    else:  # np.array (faster grouped)
        boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1])  # x1, x2
        boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0])  # y1, y2


def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
    """
    Rescales bounding boxes (in the format of xyxy) from the shape of the image they were originally specified in
    (img1_shape) to the shape of a different image (img0_shape).

    Args:
      img1_shape (tuple): The shape of the image that the bounding boxes are for, in the format of (height, width).
      boxes (torch.Tensor): the bounding boxes of the objects in the image, in the format of (x1, y1, x2, y2)
      img0_shape (tuple): the shape of the target image, in the format of (height, width).
      ratio_pad (tuple): a tuple of (ratio, pad) for scaling the boxes. If not provided, the ratio and pad will be
                         calculated based on the size difference between the two images.

    Returns:
      boxes (torch.Tensor): The scaled bounding boxes, in the format of (x1, y1, x2, y2)
    """
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    boxes[..., [0, 2]] -= pad[0]  # x padding
    boxes[..., [1, 3]] -= pad[1]  # y padding
    boxes[..., :4] /= gain
    clip_boxes(boxes, img0_shape)
    return boxes


def exif_size(img):
    # Returns exif-corrected PIL size
    s = img.size  # (width, height)
    with contextlib.suppress(Exception):
        rotation = dict(img._getexif().items())[orientation]
        if rotation in [6, 8]:  # rotation 270 or 90
            s = (s[1], s[0])
    return s


def verify_image_label(args):
    # Verify one image-label pair
    im_file, lb_file, prefix, keypoint, num_cls = args
    # number (missing, found, empty, corrupt), message, segments, keypoints
    nm, nf, ne, nc, msg, segments, keypoints = 0, 0, 0, 0, "", [], None
    try:
        # verify images
        im = Image.open(im_file)
        im.verify()  # PIL verify
        shape = exif_size(im)  # image size
        shape = (shape[1], shape[0])  # hw
        assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels"
        assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}"
        if im.format.lower() in ("jpg", "jpeg"):
            with open(im_file, "rb") as f:
                f.seek(-2, 2)
        
        # verify labels
        if os.path.isfile(lb_file):
            nf = 1  # label found
            with open(lb_file) as f:
                lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
                if any(len(x) > 6 for x in lb) and (not keypoint):  # is segment
                    classes = np.array([x[0] for x in lb], dtype=np.float32)
                    segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb]  # (cls, xy1...)
                    lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1)  # (cls, xywh)
                lb = np.array(lb, dtype=np.float32)
            nl = len(lb)
            if nl:
                if keypoint:
                    assert lb.shape[1] == 56, "labels require 56 columns each"
                    assert (lb[:, 5::3] <= 1).all(), "non-normalized or out of bounds coordinate labels"
                    assert (lb[:, 6::3] <= 1).all(), "non-normalized or out of bounds coordinate labels"
                    kpts = np.zeros((lb.shape[0], 39))
                    for i in range(len(lb)):
                        kpt = np.delete(lb[i, 5:], np.arange(2, lb.shape[1] - 5, 3))  # remove occlusion param from GT
                        kpts[i] = np.hstack((lb[i, :5], kpt))
                    lb = kpts
                    assert lb.shape[1] == 39, "labels require 39 columns each after removing occlusion parameter"
                else:
                    assert lb.shape[1] == 5, f"labels require 5 columns, {lb.shape[1]} columns detected"
                    assert (lb[:, 1:] <= 1).all(), \
                        f"non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}"
                # All labels
                max_cls = int(lb[:, 0].max())  # max label count
                assert max_cls <= num_cls, \
                    f'Label class {max_cls} exceeds dataset class count {num_cls}. ' \
                    f'Possible class labels are 0-{num_cls - 1}'
                assert (lb >= 0).all(), f"negative label values {lb[lb < 0]}"
                _, i = np.unique(lb, axis=0, return_index=True)
                if len(i) < nl:  # duplicate row check
                    lb = lb[i]  # remove duplicates
                    if segments:
                        segments = [segments[x] for x in i]
                    msg = f"{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed"
            else:
                ne = 1  # label empty
                lb = np.zeros((0, 39), dtype=np.float32) if keypoint else np.zeros((0, 5), dtype=np.float32)
        else:
            nm = 1  # label missing
            lb = np.zeros((0, 39), dtype=np.float32) if keypoint else np.zeros((0, 5), dtype=np.float32)
        if keypoint:
            keypoints = lb[:, 5:].reshape(-1, 17, 2)
        lb = lb[:, :5]
        return im_file, lb, shape, segments, keypoints, nm, nf, ne, nc, msg
    except Exception as e:
        nc = 1
        msg = f"{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}"
        return [None, None, None, None, None, nm, nf, ne, nc, msg]