File size: 13,844 Bytes
e6c79f4 3551260 e6c79f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import json
from pathlib import Path
import torch
import argparse
import numpy as np
from tqdm import tqdm
import onnxruntime
from utils import check_det_dataset, yaml_load, IterableSimpleNamespace, build_dataloader, post_process, xyxy2xywh, LOGGER, \
DetMetrics, increment_path, get_cfg, smart_inference_mode, box_iou, TQDM_BAR_FORMAT, scale_boxes, non_max_suppression, xywh2xyxy
# Default configuration
DEFAULT_CFG_DICT = yaml_load("./default.yaml")
for k, v in DEFAULT_CFG_DICT.items():
if isinstance(v, str) and v.lower() == 'none':
DEFAULT_CFG_DICT[k] = None
DEFAULT_CFG_KEYS = DEFAULT_CFG_DICT.keys()
DEFAULT_CFG = IterableSimpleNamespace(**DEFAULT_CFG_DICT)
import sys
import pathlib
CURRENT_DIR = pathlib.Path(__file__).parent
sys.path.append(str(CURRENT_DIR))
class DetectionValidator:
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
self.dataloader = dataloader
self.pbar = pbar
self.logger = LOGGER
self.args = args
self.model = None
self.data = None
self.device = None
self.batch_i = None
self.speed = None
self.jdict = None
self.args.task = 'detect'
project = Path("./runs") / self.args.task
self.save_dir = save_dir or increment_path(Path(project),
exist_ok=True)
(self.save_dir / 'labels').mkdir(parents=True, exist_ok=True)
self.args.conf = 0.001 # default conf=0.001
self.is_coco = False
self.class_map = None
self.metrics = DetMetrics(save_dir=self.save_dir)
self.iouv = torch.linspace(0.5, 0.95, 10) # iou vector for mAP@0.5:0.95
self.niou = self.iouv.numel()
@smart_inference_mode()
def __call__(self, trainer=None, model=None):
"""
Supports validation of a pre-trained model if passed or a model being trained
if trainer is passed (trainer gets priority).
"""
self.device = torch.device('cpu')
onnx_weight = self.args.onnx_weight
if isinstance(onnx_weight, list):
onnx_weight = onnx_weight[0]
if self.args.ipu:
providers = ["VitisAIExecutionProvider"]
provider_options = [{"config_file": self.args.provider_config}]
onnx_model = onnxruntime.InferenceSession(onnx_weight, providers=providers, provider_options=provider_options)
else:
onnx_model = onnxruntime.InferenceSession(onnx_weight)
self.data = check_det_dataset(self.args.data)
self.args.rect = False
self.dataloader = self.dataloader or self.get_dataloader(self.data.get("val") or self.data.get("test"), self.args.batch)
total = len(self.dataloader)
n_batches = len(self.dataloader)
desc = self.get_desc()
bar = tqdm(self.dataloader, desc, total, bar_format=TQDM_BAR_FORMAT)
self.init_metrics()
self.jdict = [] # empty before each val
for batch_i, batch in enumerate(bar):
self.batch_i = batch_i
# pre-process
batch = self.preprocess(batch)
# inference
# outputs = onnx_model.run(None, {onnx_model.get_inputs()[0].name: batch["img"].cpu().numpy()})
outputs = onnx_model.run(None, {onnx_model.get_inputs()[0].name: batch["img"].permute(0, 2, 3, 1).cpu().numpy()})
# outputs = [torch.tensor(item).to(self.device) for item in outputs]
outputs = [torch.tensor(item).permute(0, 3, 1, 2).to(self.device) for item in outputs]
preds = post_process(outputs)
# pre-process predictions
preds = self.postprocess(preds)
self.update_metrics(preds, batch)
stats = self.get_stats()
self.print_results()
if self.args.save_json and self.jdict:
with open(str(self.save_dir / "predictions.json"), 'w') as f:
self.logger.info(f"Saving {f.name}...")
json.dump(self.jdict, f) # flatten and save
stats = self.eval_json(stats) # update stats
return stats
def get_dataloader(self, dataset_path, batch_size):
# calculate stride - check if model is initialized
return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=32, names=self.data['names'], mode="val")[0]
def get_desc(self):
return ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)")
def init_metrics(self):
self.is_coco = True
self.class_map = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
self.args.save_json = True
self.nc = 80
classnames = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush']
self.names = {k: classnames[k] for k in range(80)}
self.metrics.names = self.names
self.metrics.plot = True
self.seen = 0
self.jdict = []
self.stats = []
def preprocess(self, batch):
batch["img"] = batch["img"].to(self.device, non_blocking=True)
batch["img"] = batch["img"].float() / 255
for k in ["batch_idx", "cls", "bboxes"]:
batch[k] = batch[k].to(self.device)
nb = len(batch["img"])
self.lb = [torch.cat([batch["cls"], batch["bboxes"]], dim=-1)[batch["batch_idx"] == i]
for i in range(nb)] if self.args.save_hybrid else [] # for autolabelling
return batch
def postprocess(self, preds):
preds = non_max_suppression(preds,
self.args.conf,
self.args.iou,
labels=self.lb,
multi_label=True,
agnostic=self.args.single_cls,
max_det=self.args.max_det)
return preds
def update_metrics(self, preds, batch):
# Metrics
for si, pred in enumerate(preds):
idx = batch["batch_idx"] == si
cls = batch["cls"][idx]
bbox = batch["bboxes"][idx]
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
shape = batch["ori_shape"][si]
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
self.seen += 1
if npr == 0:
if nl:
self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1)))
continue
# Predictions
if self.args.single_cls:
pred[:, 5] = 0
predn = pred.clone()
scale_boxes(batch["img"][si].shape[1:], predn[:, :4], shape,
ratio_pad=batch["ratio_pad"][si]) # native-space pred
# Evaluate
if nl:
height, width = batch["img"].shape[2:]
tbox = xywh2xyxy(bbox) * torch.tensor(
(width, height, width, height), device=self.device) # target boxes
scale_boxes(batch["img"][si].shape[1:], tbox, shape,
ratio_pad=batch["ratio_pad"][si]) # native-space labels
labelsn = torch.cat((cls, tbox), 1) # native-space labels
correct_bboxes = self._process_batch(predn, labelsn)
self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls)
# Save
if self.args.save_json:
self.pred_to_json(predn, batch["im_file"][si])
def _process_batch(self, detections, labels):
"""
Return correct prediction matrix
Arguments:
detections (array[N, 6]), x1, y1, x2, y2, conf, class
labels (array[M, 5]), class, x1, y1, x2, y2
Returns:
correct (array[N, 10]), for 10 IoU levels
"""
iou = box_iou(labels[:, 1:], detections[:, :4])
correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool)
correct_class = labels[:, 0:1] == detections[:, 5]
for i in range(len(self.iouv)):
x = torch.where((iou >= self.iouv[i]) & correct_class) # IoU > threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]),
1).cpu().numpy() # [label, detect, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=detections.device)
def pred_to_json(self, predn, filename):
stem = Path(filename).stem
image_id = int(stem) if stem.isnumeric() else stem
box = xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(predn.tolist(), box.tolist()):
self.jdict.append({
'image_id': image_id,
'category_id': self.class_map[int(p[5])],
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5)})
def get_stats(self):
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy
if len(stats) and stats[0].any():
self.metrics.process(*stats)
self.nt_per_class = np.bincount(stats[-1].astype(int), minlength=self.nc) # number of targets per class
return self.metrics.results_dict
def print_results(self):
pf = '%22s' + '%11i' * 2 + '%11.3g' * len(self.metrics.keys) # print format
self.logger.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
if self.nt_per_class.sum() == 0:
self.logger.warning(
f'WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels')
# Print results per class
if self.args.verbose and self.nc > 1 and len(self.stats):
for i, c in enumerate(self.metrics.ap_class_index):
self.logger.info(pf % (self.names[c], self.seen, self.nt_per_class[c], *self.metrics.class_result(i)))
def eval_json(self, stats):
if self.args.save_json and self.is_coco and len(self.jdict):
anno_json = Path(self.data['path']) / 'annotations/instances_val2017.json' # annotations
pred_json = self.save_dir / "predictions.json" # predictions
self.logger.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...')
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
from pycocotools.coco import COCO # noqa
from pycocotools.cocoeval import COCOeval # noqa
# for x in anno_json, pred_json:
# assert x.is_file(), f"{x} file not found"
anno = COCO(str(anno_json)) # init annotations api
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
eval = COCOeval(anno, pred, 'bbox')
if self.is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # images to eval
eval.evaluate()
eval.accumulate()
eval.summarize()
stats[self.metrics.keys[-1]], stats[self.metrics.keys[-2]] = eval.stats[:2] # update mAP50-95 and mAP50
except Exception as e:
self.logger.warning(f'pycocotools unable to run: {e}')
return stats
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--ipu', action='store_true', help='flag for ryzen ai')
parser.add_argument('--provider_config', default='', type=str, help='provider config for ryzen ai')
parser.add_argument("-m", "--model", default="./yolov8m_qat.onnx", type=str, help='onnx_weight')
opt = parser.parse_args()
return opt
if __name__ == "__main__":
opt = parse_opt()
args = get_cfg(DEFAULT_CFG)
args.ipu = opt.ipu
args.onnx_weight = opt.model
args.provider_config = opt.provider_config
validator = DetectionValidator(args=args)
validator()
|