|
import torch, os |
|
from safetensors import safe_open |
|
|
|
from .sd_text_encoder import SDTextEncoder |
|
from .sd_unet import SDUNet |
|
from .sd_vae_encoder import SDVAEEncoder |
|
from .sd_vae_decoder import SDVAEDecoder |
|
from .sd_lora import SDLoRA |
|
|
|
from .sdxl_text_encoder import SDXLTextEncoder, SDXLTextEncoder2 |
|
from .sdxl_unet import SDXLUNet |
|
from .sdxl_vae_decoder import SDXLVAEDecoder |
|
from .sdxl_vae_encoder import SDXLVAEEncoder |
|
|
|
from .sd_controlnet import SDControlNet |
|
|
|
from .sd_motion import SDMotionModel |
|
|
|
|
|
class ModelManager: |
|
def __init__(self, torch_dtype=torch.float16, device="cuda"): |
|
self.torch_dtype = torch_dtype |
|
self.device = device |
|
self.model = {} |
|
self.model_path = {} |
|
self.textual_inversion_dict = {} |
|
|
|
def is_RIFE(self, state_dict): |
|
param_name = "block_tea.convblock3.0.1.weight" |
|
return param_name in state_dict or ("module." + param_name) in state_dict |
|
|
|
def is_beautiful_prompt(self, state_dict): |
|
param_name = "transformer.h.9.self_attention.query_key_value.weight" |
|
return param_name in state_dict |
|
|
|
def is_stabe_diffusion_xl(self, state_dict): |
|
param_name = "conditioner.embedders.0.transformer.text_model.embeddings.position_embedding.weight" |
|
return param_name in state_dict |
|
|
|
def is_stable_diffusion(self, state_dict): |
|
if self.is_stabe_diffusion_xl(state_dict): |
|
return False |
|
param_name = "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3.weight" |
|
return param_name in state_dict |
|
|
|
def is_controlnet(self, state_dict): |
|
param_name = "control_model.time_embed.0.weight" |
|
return param_name in state_dict |
|
|
|
def is_animatediff(self, state_dict): |
|
param_name = "mid_block.motion_modules.0.temporal_transformer.proj_out.weight" |
|
return param_name in state_dict |
|
|
|
def is_sd_lora(self, state_dict): |
|
param_name = "lora_unet_up_blocks_3_attentions_2_transformer_blocks_0_ff_net_2.lora_up.weight" |
|
return param_name in state_dict |
|
|
|
def is_translator(self, state_dict): |
|
param_name = "model.encoder.layers.5.self_attn_layer_norm.weight" |
|
return param_name in state_dict and len(state_dict) == 254 |
|
|
|
def load_stable_diffusion(self, state_dict, components=None, file_path=""): |
|
component_dict = { |
|
"text_encoder": SDTextEncoder, |
|
"unet": SDUNet, |
|
"vae_decoder": SDVAEDecoder, |
|
"vae_encoder": SDVAEEncoder, |
|
"refiner": SDXLUNet, |
|
} |
|
if components is None: |
|
components = ["text_encoder", "unet", "vae_decoder", "vae_encoder"] |
|
for component in components: |
|
if component == "text_encoder": |
|
|
|
token_embeddings = [state_dict["cond_stage_model.transformer.text_model.embeddings.token_embedding.weight"]] |
|
for keyword in self.textual_inversion_dict: |
|
_, embeddings = self.textual_inversion_dict[keyword] |
|
token_embeddings.append(embeddings.to(dtype=token_embeddings[0].dtype)) |
|
token_embeddings = torch.concat(token_embeddings, dim=0) |
|
state_dict["cond_stage_model.transformer.text_model.embeddings.token_embedding.weight"] = token_embeddings |
|
self.model[component] = component_dict[component](vocab_size=token_embeddings.shape[0]) |
|
self.model[component].load_state_dict(self.model[component].state_dict_converter().from_civitai(state_dict)) |
|
self.model[component].to(self.torch_dtype).to(self.device) |
|
else: |
|
self.model[component] = component_dict[component]() |
|
self.model[component].load_state_dict(self.model[component].state_dict_converter().from_civitai(state_dict)) |
|
self.model[component].to(self.torch_dtype).to(self.device) |
|
self.model_path[component] = file_path |
|
|
|
def load_stable_diffusion_xl(self, state_dict, components=None, file_path=""): |
|
component_dict = { |
|
"text_encoder": SDXLTextEncoder, |
|
"text_encoder_2": SDXLTextEncoder2, |
|
"unet": SDXLUNet, |
|
"vae_decoder": SDXLVAEDecoder, |
|
"vae_encoder": SDXLVAEEncoder, |
|
} |
|
if components is None: |
|
components = ["text_encoder", "text_encoder_2", "unet", "vae_decoder", "vae_encoder"] |
|
for component in components: |
|
self.model[component] = component_dict[component]() |
|
self.model[component].load_state_dict(self.model[component].state_dict_converter().from_civitai(state_dict)) |
|
if component in ["vae_decoder", "vae_encoder"]: |
|
|
|
|
|
|
|
self.model[component].to(torch.float32).to(self.device) |
|
else: |
|
self.model[component].to(self.torch_dtype).to(self.device) |
|
self.model_path[component] = file_path |
|
|
|
def load_controlnet(self, state_dict, file_path=""): |
|
component = "controlnet" |
|
if component not in self.model: |
|
self.model[component] = [] |
|
self.model_path[component] = [] |
|
model = SDControlNet() |
|
model.load_state_dict(model.state_dict_converter().from_civitai(state_dict)) |
|
model.to(self.torch_dtype).to(self.device) |
|
self.model[component].append(model) |
|
self.model_path[component].append(file_path) |
|
|
|
def load_animatediff(self, state_dict, file_path=""): |
|
component = "motion_modules" |
|
model = SDMotionModel() |
|
model.load_state_dict(model.state_dict_converter().from_civitai(state_dict)) |
|
model.to(self.torch_dtype).to(self.device) |
|
self.model[component] = model |
|
self.model_path[component] = file_path |
|
|
|
def load_beautiful_prompt(self, state_dict, file_path=""): |
|
component = "beautiful_prompt" |
|
from transformers import AutoModelForCausalLM |
|
model_folder = os.path.dirname(file_path) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_folder, state_dict=state_dict, local_files_only=True, torch_dtype=self.torch_dtype |
|
).to(self.device).eval() |
|
self.model[component] = model |
|
self.model_path[component] = file_path |
|
|
|
def load_RIFE(self, state_dict, file_path=""): |
|
component = "RIFE" |
|
from ..extensions.RIFE import IFNet |
|
model = IFNet().eval() |
|
model.load_state_dict(model.state_dict_converter().from_civitai(state_dict)) |
|
model.to(torch.float32).to(self.device) |
|
self.model[component] = model |
|
self.model_path[component] = file_path |
|
|
|
def load_sd_lora(self, state_dict, alpha): |
|
SDLoRA().add_lora_to_text_encoder(self.model["text_encoder"], state_dict, alpha=alpha, device=self.device) |
|
SDLoRA().add_lora_to_unet(self.model["unet"], state_dict, alpha=alpha, device=self.device) |
|
|
|
def load_translator(self, state_dict, file_path=""): |
|
|
|
component = "translator" |
|
from transformers import AutoModelForSeq2SeqLM |
|
model_folder = os.path.dirname(file_path) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_folder).eval() |
|
self.model[component] = model |
|
self.model_path[component] = file_path |
|
|
|
def search_for_embeddings(self, state_dict): |
|
embeddings = [] |
|
for k in state_dict: |
|
if isinstance(state_dict[k], torch.Tensor): |
|
embeddings.append(state_dict[k]) |
|
elif isinstance(state_dict[k], dict): |
|
embeddings += self.search_for_embeddings(state_dict[k]) |
|
return embeddings |
|
|
|
def load_textual_inversions(self, folder): |
|
|
|
self.textual_inversion_dict = {} |
|
|
|
|
|
for file_name in os.listdir(folder): |
|
if file_name.endswith(".txt"): |
|
continue |
|
keyword = os.path.splitext(file_name)[0] |
|
state_dict = load_state_dict(os.path.join(folder, file_name)) |
|
|
|
|
|
for embeddings in self.search_for_embeddings(state_dict): |
|
if len(embeddings.shape) == 2 and embeddings.shape[1] == 768: |
|
tokens = [f"{keyword}_{i}" for i in range(embeddings.shape[0])] |
|
self.textual_inversion_dict[keyword] = (tokens, embeddings) |
|
break |
|
|
|
def load_model(self, file_path, components=None, lora_alphas=[]): |
|
state_dict = load_state_dict(file_path, torch_dtype=self.torch_dtype) |
|
if self.is_animatediff(state_dict): |
|
self.load_animatediff(state_dict, file_path=file_path) |
|
elif self.is_controlnet(state_dict): |
|
self.load_controlnet(state_dict, file_path=file_path) |
|
elif self.is_stabe_diffusion_xl(state_dict): |
|
self.load_stable_diffusion_xl(state_dict, components=components, file_path=file_path) |
|
elif self.is_stable_diffusion(state_dict): |
|
self.load_stable_diffusion(state_dict, components=components, file_path=file_path) |
|
elif self.is_sd_lora(state_dict): |
|
self.load_sd_lora(state_dict, alpha=lora_alphas.pop(0)) |
|
elif self.is_beautiful_prompt(state_dict): |
|
self.load_beautiful_prompt(state_dict, file_path=file_path) |
|
elif self.is_RIFE(state_dict): |
|
self.load_RIFE(state_dict, file_path=file_path) |
|
elif self.is_translator(state_dict): |
|
self.load_translator(state_dict, file_path=file_path) |
|
|
|
def load_models(self, file_path_list, lora_alphas=[]): |
|
for file_path in file_path_list: |
|
self.load_model(file_path, lora_alphas=lora_alphas) |
|
|
|
def to(self, device): |
|
for component in self.model: |
|
if isinstance(self.model[component], list): |
|
for model in self.model[component]: |
|
model.to(device) |
|
else: |
|
self.model[component].to(device) |
|
torch.cuda.empty_cache() |
|
|
|
def get_model_with_model_path(self, model_path): |
|
for component in self.model_path: |
|
if isinstance(self.model_path[component], str): |
|
if os.path.samefile(self.model_path[component], model_path): |
|
return self.model[component] |
|
elif isinstance(self.model_path[component], list): |
|
for i, model_path_ in enumerate(self.model_path[component]): |
|
if os.path.samefile(model_path_, model_path): |
|
return self.model[component][i] |
|
raise ValueError(f"Please load model {model_path} before you use it.") |
|
|
|
def __getattr__(self, __name): |
|
if __name in self.model: |
|
return self.model[__name] |
|
else: |
|
return super.__getattribute__(__name) |
|
|
|
|
|
def load_state_dict(file_path, torch_dtype=None): |
|
if file_path.endswith(".safetensors"): |
|
return load_state_dict_from_safetensors(file_path, torch_dtype=torch_dtype) |
|
else: |
|
return load_state_dict_from_bin(file_path, torch_dtype=torch_dtype) |
|
|
|
|
|
def load_state_dict_from_safetensors(file_path, torch_dtype=None): |
|
state_dict = {} |
|
with safe_open(file_path, framework="pt", device="cpu") as f: |
|
for k in f.keys(): |
|
state_dict[k] = f.get_tensor(k) |
|
if torch_dtype is not None: |
|
state_dict[k] = state_dict[k].to(torch_dtype) |
|
return state_dict |
|
|
|
|
|
def load_state_dict_from_bin(file_path, torch_dtype=None): |
|
state_dict = torch.load(file_path, map_location="cpu") |
|
if torch_dtype is not None: |
|
state_dict = {i: state_dict[i].to(torch_dtype) for i in state_dict} |
|
return state_dict |
|
|
|
|
|
def search_parameter(param, state_dict): |
|
for name, param_ in state_dict.items(): |
|
if param.numel() == param_.numel(): |
|
if param.shape == param_.shape: |
|
if torch.dist(param, param_) < 1e-6: |
|
return name |
|
else: |
|
if torch.dist(param.flatten(), param_.flatten()) < 1e-6: |
|
return name |
|
return None |
|
|
|
|
|
def build_rename_dict(source_state_dict, target_state_dict, split_qkv=False): |
|
matched_keys = set() |
|
with torch.no_grad(): |
|
for name in source_state_dict: |
|
rename = search_parameter(source_state_dict[name], target_state_dict) |
|
if rename is not None: |
|
print(f'"{name}": "{rename}",') |
|
matched_keys.add(rename) |
|
elif split_qkv and len(source_state_dict[name].shape)>=1 and source_state_dict[name].shape[0]%3==0: |
|
length = source_state_dict[name].shape[0] // 3 |
|
rename = [] |
|
for i in range(3): |
|
rename.append(search_parameter(source_state_dict[name][i*length: i*length+length], target_state_dict)) |
|
if None not in rename: |
|
print(f'"{name}": {rename},') |
|
for rename_ in rename: |
|
matched_keys.add(rename_) |
|
for name in target_state_dict: |
|
if name not in matched_keys: |
|
print("Cannot find", name, target_state_dict[name].shape) |
|
|