import torch from .sd_text_encoder import CLIPEncoderLayer class CLIPVisionEmbeddings(torch.nn.Module): def __init__(self, embed_dim=1280, image_size=224, patch_size=14, num_channels=3): super().__init__() # class_embeds (This is a fixed tensor) self.class_embedding = torch.nn.Parameter(torch.randn(1, 1, embed_dim)) # position_embeds self.patch_embedding = torch.nn.Conv2d(in_channels=num_channels, out_channels=embed_dim, kernel_size=patch_size, stride=patch_size, bias=False) # position_embeds (This is a fixed tensor) self.position_embeds = torch.nn.Parameter(torch.zeros(1, (image_size // patch_size) ** 2 + 1, embed_dim)) def forward(self, pixel_values): batch_size = pixel_values.shape[0] patch_embeds = self.patch_embedding(pixel_values) patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.repeat(batch_size, 1, 1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) + self.position_embeds return embeddings class SVDImageEncoder(torch.nn.Module): def __init__(self, embed_dim=1280, layer_norm_eps=1e-5, num_encoder_layers=32, encoder_intermediate_size=5120, projection_dim=1024): super().__init__() self.embeddings = CLIPVisionEmbeddings(embed_dim=embed_dim) self.pre_layernorm = torch.nn.LayerNorm(embed_dim, eps=layer_norm_eps) self.encoders = torch.nn.ModuleList([CLIPEncoderLayer(embed_dim, encoder_intermediate_size, num_heads=16, head_dim=80, use_quick_gelu=False) for _ in range(num_encoder_layers)]) self.post_layernorm = torch.nn.LayerNorm(embed_dim, eps=layer_norm_eps) self.visual_projection = torch.nn.Linear(embed_dim, projection_dim, bias=False) def forward(self, pixel_values): embeds = self.embeddings(pixel_values) embeds = self.pre_layernorm(embeds) for encoder_id, encoder in enumerate(self.encoders): embeds = encoder(embeds) embeds = self.post_layernorm(embeds[:, 0, :]) embeds = self.visual_projection(embeds) return embeds def state_dict_converter(self): return SVDImageEncoderStateDictConverter() class SVDImageEncoderStateDictConverter: def __init__(self): pass def from_diffusers(self, state_dict): rename_dict = { "vision_model.embeddings.patch_embedding.weight": "embeddings.patch_embedding.weight", "vision_model.embeddings.class_embedding": "embeddings.class_embedding", "vision_model.embeddings.position_embedding.weight": "embeddings.position_embeds", "vision_model.pre_layrnorm.weight": "pre_layernorm.weight", "vision_model.pre_layrnorm.bias": "pre_layernorm.bias", "vision_model.post_layernorm.weight": "post_layernorm.weight", "vision_model.post_layernorm.bias": "post_layernorm.bias", "visual_projection.weight": "visual_projection.weight" } attn_rename_dict = { "self_attn.q_proj": "attn.to_q", "self_attn.k_proj": "attn.to_k", "self_attn.v_proj": "attn.to_v", "self_attn.out_proj": "attn.to_out", "layer_norm1": "layer_norm1", "layer_norm2": "layer_norm2", "mlp.fc1": "fc1", "mlp.fc2": "fc2", } state_dict_ = {} for name in state_dict: if name in rename_dict: param = state_dict[name] if name == "vision_model.embeddings.class_embedding": param = state_dict[name].view(1, 1, -1) elif name == "vision_model.embeddings.position_embedding.weight": param = state_dict[name].view(1, 257, 1280) state_dict_[rename_dict[name]] = param elif name.startswith("vision_model.encoder.layers."): param = state_dict[name] names = name.split(".") layer_id, layer_type, tail = names[3], ".".join(names[4:-1]), names[-1] name_ = ".".join(["encoders", layer_id, attn_rename_dict[layer_type], tail]) state_dict_[name_] = param return state_dict_