File size: 2,130 Bytes
c6a61ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup,
from datasets import load_dataset

# Load the jokes dataset
dataset = load_dataset("ysharma/short_jokes")
# Accessing the train split
train_data = dataset['train']
# Shuffle the dataset and select 20% of the data
twenty_percent_size = int(0.2 * len(train_data))
subset = train_data.shuffle(seed=42)[:twenty_percent_size]


# Use GPT-2's tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("gpt2-medium")
tokenizer.pad_token = tokenizer.eos_token

# Tokenize the dataset
def tokenize_function(examples):
    return tokenizer(examples["Joke"], padding="max_length", truncation=True, max_length=50)

tokenized_datasets = dataset.map(tokenize_function, batched=True)

# Load GPT-2 model
model = GPT2LMHeadModel.from_pretrained("gpt2-medium")
model.train()

# Training parameters
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
optimizer = AdamW(model.parameters(), lr=5e-5)
num_epochs = 100
total_steps = len(tokenized_datasets["train"]) * num_epochs
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)

# Training loop
for epoch in range(num_epochs):
    for idx, batch in enumerate(tokenized_datasets["train"]):
        inputs = torch.tensor(batch["input_ids"]).to(device)
        attention_mask = torch.tensor(batch["attention_mask"]).to(device)
        outputs = model(inputs, attention_mask=attention_mask, labels=inputs)
        loss = outputs.loss
        loss.backward()
        optimizer.step()
        scheduler.step()
        optimizer.zero_grad()

        if idx % 100 == 0:
            print(f"Epoch: {epoch}, Batch: {idx}, Loss: {loss.item()}")
    if epoch%5==0:
        save_directory = f"./trained_gpt2_jokes/{epoch}"
        model.save_pretrained(save_directory)
        tokenizer.save_pretrained(save_directory)


print("Training completed!")
save_directory = "./trained_gpt2_jokes/final"
model.save_pretrained(save_directory)
tokenizer.save_pretrained(save_directory)

print(f"Model and tokenizer saved to {save_directory}")