# Load the trained model and tokenizer import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel,GPT2Model from transformers import TFAutoModel model_path = "./trained_gpt2_jokes/5/" device = "cuda" if torch.cuda.is_available() else "cpu" model = GPT2LMHeadModel.from_pretrained(model_path, from_tf=True).to(device) tokenizer = GPT2Tokenizer.from_pretrained(model_path) # Put the model in eval mode model.eval() # Define a function for generating text def generate_text(prompt_text): # Encode the prompt text and move to GPU input_ids = tokenizer.encode(prompt_text, return_tensors="pt").to(device) # Generate text with torch.no_grad(): output = model.generate(input_ids, max_length=100, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id, temperature=0.5) # Decode the generated text decoded_output = tokenizer.decode(output[0], skip_special_tokens=True) return decoded_output # Testing the model with a sample prompt prompt = "Why man are " generated_joke = generate_text(prompt) print(generated_joke) #result getting --->Why man are so upset about the new $20 bill? Because it's only worth $15 more than $20.