|
from collections import defaultdict |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
def make_positions(tensor, padding_idx): |
|
"""Replace non-padding symbols with their position numbers. |
|
|
|
Position numbers begin at padding_idx+1. Padding symbols are ignored. |
|
""" |
|
|
|
|
|
|
|
|
|
mask = tensor.ne(padding_idx).int() |
|
return ( |
|
torch.cumsum(mask, dim=1).type_as(mask) * mask |
|
).long() + padding_idx |
|
|
|
|
|
def softmax(x, dim): |
|
return F.softmax(x, dim=dim, dtype=torch.float32) |
|
|
|
|
|
def sequence_mask(lengths, maxlen, dtype=torch.bool): |
|
if maxlen is None: |
|
maxlen = lengths.max() |
|
mask = ~(torch.ones((len(lengths), maxlen)).to(lengths.device).cumsum(dim=1).t() > lengths).t() |
|
mask.type(dtype) |
|
return mask |
|
|
|
|
|
def weights_nonzero_speech(target): |
|
|
|
|
|
dim = target.size(-1) |
|
return target.abs().sum(-1, keepdim=True).ne(0).float().repeat(1, 1, dim) |
|
|
|
|
|
INCREMENTAL_STATE_INSTANCE_ID = defaultdict(lambda: 0) |
|
|
|
|
|
def _get_full_incremental_state_key(module_instance, key): |
|
module_name = module_instance.__class__.__name__ |
|
|
|
|
|
|
|
if not hasattr(module_instance, '_instance_id'): |
|
INCREMENTAL_STATE_INSTANCE_ID[module_name] += 1 |
|
module_instance._instance_id = INCREMENTAL_STATE_INSTANCE_ID[module_name] |
|
|
|
return '{}.{}.{}'.format(module_name, module_instance._instance_id, key) |
|
|
|
|
|
def get_incremental_state(module, incremental_state, key): |
|
"""Helper for getting incremental state for an nn.Module.""" |
|
full_key = _get_full_incremental_state_key(module, key) |
|
if incremental_state is None or full_key not in incremental_state: |
|
return None |
|
return incremental_state[full_key] |
|
|
|
|
|
def set_incremental_state(module, incremental_state, key, value): |
|
"""Helper for setting incremental state for an nn.Module.""" |
|
if incremental_state is not None: |
|
full_key = _get_full_incremental_state_key(module, key) |
|
incremental_state[full_key] = value |
|
|
|
|
|
def fill_with_neg_inf(t): |
|
"""FP16-compatible function that fills a tensor with -inf.""" |
|
return t.float().fill_(float('-inf')).type_as(t) |
|
|
|
|
|
def fill_with_neg_inf2(t): |
|
"""FP16-compatible function that fills a tensor with -inf.""" |
|
return t.float().fill_(-1e8).type_as(t) |
|
|
|
|
|
def select_attn(attn_logits, type='best'): |
|
""" |
|
|
|
:param attn_logits: [n_layers, B, n_head, T_sp, T_txt] |
|
:return: |
|
""" |
|
encdec_attn = torch.stack(attn_logits, 0).transpose(1, 2) |
|
|
|
encdec_attn = (encdec_attn.reshape([-1, *encdec_attn.shape[2:]])).softmax(-1) |
|
if type == 'best': |
|
indices = encdec_attn.max(-1).values.sum(-1).argmax(0) |
|
encdec_attn = encdec_attn.gather( |
|
0, indices[None, :, None, None].repeat(1, 1, encdec_attn.size(-2), encdec_attn.size(-1)))[0] |
|
return encdec_attn |
|
elif type == 'mean': |
|
return encdec_attn.mean(0) |
|
|
|
|
|
def make_pad_mask(lengths, xs=None, length_dim=-1): |
|
"""Make mask tensor containing indices of padded part. |
|
Args: |
|
lengths (LongTensor or List): Batch of lengths (B,). |
|
xs (Tensor, optional): The reference tensor. |
|
If set, masks will be the same shape as this tensor. |
|
length_dim (int, optional): Dimension indicator of the above tensor. |
|
See the example. |
|
Returns: |
|
Tensor: Mask tensor containing indices of padded part. |
|
dtype=torch.uint8 in PyTorch 1.2- |
|
dtype=torch.bool in PyTorch 1.2+ (including 1.2) |
|
Examples: |
|
With only lengths. |
|
>>> lengths = [5, 3, 2] |
|
>>> make_non_pad_mask(lengths) |
|
masks = [[0, 0, 0, 0 ,0], |
|
[0, 0, 0, 1, 1], |
|
[0, 0, 1, 1, 1]] |
|
With the reference tensor. |
|
>>> xs = torch.zeros((3, 2, 4)) |
|
>>> make_pad_mask(lengths, xs) |
|
tensor([[[0, 0, 0, 0], |
|
[0, 0, 0, 0]], |
|
[[0, 0, 0, 1], |
|
[0, 0, 0, 1]], |
|
[[0, 0, 1, 1], |
|
[0, 0, 1, 1]]], dtype=torch.uint8) |
|
>>> xs = torch.zeros((3, 2, 6)) |
|
>>> make_pad_mask(lengths, xs) |
|
tensor([[[0, 0, 0, 0, 0, 1], |
|
[0, 0, 0, 0, 0, 1]], |
|
[[0, 0, 0, 1, 1, 1], |
|
[0, 0, 0, 1, 1, 1]], |
|
[[0, 0, 1, 1, 1, 1], |
|
[0, 0, 1, 1, 1, 1]]], dtype=torch.uint8) |
|
With the reference tensor and dimension indicator. |
|
>>> xs = torch.zeros((3, 6, 6)) |
|
>>> make_pad_mask(lengths, xs, 1) |
|
tensor([[[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[1, 1, 1, 1, 1, 1]], |
|
[[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[1, 1, 1, 1, 1, 1], |
|
[1, 1, 1, 1, 1, 1], |
|
[1, 1, 1, 1, 1, 1]], |
|
[[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[1, 1, 1, 1, 1, 1], |
|
[1, 1, 1, 1, 1, 1], |
|
[1, 1, 1, 1, 1, 1], |
|
[1, 1, 1, 1, 1, 1]]], dtype=torch.uint8) |
|
>>> make_pad_mask(lengths, xs, 2) |
|
tensor([[[0, 0, 0, 0, 0, 1], |
|
[0, 0, 0, 0, 0, 1], |
|
[0, 0, 0, 0, 0, 1], |
|
[0, 0, 0, 0, 0, 1], |
|
[0, 0, 0, 0, 0, 1], |
|
[0, 0, 0, 0, 0, 1]], |
|
[[0, 0, 0, 1, 1, 1], |
|
[0, 0, 0, 1, 1, 1], |
|
[0, 0, 0, 1, 1, 1], |
|
[0, 0, 0, 1, 1, 1], |
|
[0, 0, 0, 1, 1, 1], |
|
[0, 0, 0, 1, 1, 1]], |
|
[[0, 0, 1, 1, 1, 1], |
|
[0, 0, 1, 1, 1, 1], |
|
[0, 0, 1, 1, 1, 1], |
|
[0, 0, 1, 1, 1, 1], |
|
[0, 0, 1, 1, 1, 1], |
|
[0, 0, 1, 1, 1, 1]]], dtype=torch.uint8) |
|
""" |
|
if length_dim == 0: |
|
raise ValueError("length_dim cannot be 0: {}".format(length_dim)) |
|
|
|
if not isinstance(lengths, list): |
|
lengths = lengths.tolist() |
|
bs = int(len(lengths)) |
|
if xs is None: |
|
maxlen = int(max(lengths)) |
|
else: |
|
maxlen = xs.size(length_dim) |
|
|
|
seq_range = torch.arange(0, maxlen, dtype=torch.int64) |
|
seq_range_expand = seq_range.unsqueeze(0).expand(bs, maxlen) |
|
seq_length_expand = seq_range_expand.new(lengths).unsqueeze(-1) |
|
mask = seq_range_expand >= seq_length_expand |
|
|
|
if xs is not None: |
|
assert xs.size(0) == bs, (xs.size(0), bs) |
|
|
|
if length_dim < 0: |
|
length_dim = xs.dim() + length_dim |
|
|
|
ind = tuple( |
|
slice(None) if i in (0, length_dim) else None for i in range(xs.dim()) |
|
) |
|
mask = mask[ind].expand_as(xs).to(xs.device) |
|
return mask |
|
|
|
|
|
def make_non_pad_mask(lengths, xs=None, length_dim=-1): |
|
"""Make mask tensor containing indices of non-padded part. |
|
Args: |
|
lengths (LongTensor or List): Batch of lengths (B,). |
|
xs (Tensor, optional): The reference tensor. |
|
If set, masks will be the same shape as this tensor. |
|
length_dim (int, optional): Dimension indicator of the above tensor. |
|
See the example. |
|
Returns: |
|
ByteTensor: mask tensor containing indices of padded part. |
|
dtype=torch.uint8 in PyTorch 1.2- |
|
dtype=torch.bool in PyTorch 1.2+ (including 1.2) |
|
Examples: |
|
With only lengths. |
|
>>> lengths = [5, 3, 2] |
|
>>> make_non_pad_mask(lengths) |
|
masks = [[1, 1, 1, 1 ,1], |
|
[1, 1, 1, 0, 0], |
|
[1, 1, 0, 0, 0]] |
|
With the reference tensor. |
|
>>> xs = torch.zeros((3, 2, 4)) |
|
>>> make_non_pad_mask(lengths, xs) |
|
tensor([[[1, 1, 1, 1], |
|
[1, 1, 1, 1]], |
|
[[1, 1, 1, 0], |
|
[1, 1, 1, 0]], |
|
[[1, 1, 0, 0], |
|
[1, 1, 0, 0]]], dtype=torch.uint8) |
|
>>> xs = torch.zeros((3, 2, 6)) |
|
>>> make_non_pad_mask(lengths, xs) |
|
tensor([[[1, 1, 1, 1, 1, 0], |
|
[1, 1, 1, 1, 1, 0]], |
|
[[1, 1, 1, 0, 0, 0], |
|
[1, 1, 1, 0, 0, 0]], |
|
[[1, 1, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0]]], dtype=torch.uint8) |
|
With the reference tensor and dimension indicator. |
|
>>> xs = torch.zeros((3, 6, 6)) |
|
>>> make_non_pad_mask(lengths, xs, 1) |
|
tensor([[[1, 1, 1, 1, 1, 1], |
|
[1, 1, 1, 1, 1, 1], |
|
[1, 1, 1, 1, 1, 1], |
|
[1, 1, 1, 1, 1, 1], |
|
[1, 1, 1, 1, 1, 1], |
|
[0, 0, 0, 0, 0, 0]], |
|
[[1, 1, 1, 1, 1, 1], |
|
[1, 1, 1, 1, 1, 1], |
|
[1, 1, 1, 1, 1, 1], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0]], |
|
[[1, 1, 1, 1, 1, 1], |
|
[1, 1, 1, 1, 1, 1], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0]]], dtype=torch.uint8) |
|
>>> make_non_pad_mask(lengths, xs, 2) |
|
tensor([[[1, 1, 1, 1, 1, 0], |
|
[1, 1, 1, 1, 1, 0], |
|
[1, 1, 1, 1, 1, 0], |
|
[1, 1, 1, 1, 1, 0], |
|
[1, 1, 1, 1, 1, 0], |
|
[1, 1, 1, 1, 1, 0]], |
|
[[1, 1, 1, 0, 0, 0], |
|
[1, 1, 1, 0, 0, 0], |
|
[1, 1, 1, 0, 0, 0], |
|
[1, 1, 1, 0, 0, 0], |
|
[1, 1, 1, 0, 0, 0], |
|
[1, 1, 1, 0, 0, 0]], |
|
[[1, 1, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0]]], dtype=torch.uint8) |
|
""" |
|
return ~make_pad_mask(lengths, xs, length_dim) |
|
|
|
|
|
def get_mask_from_lengths(lengths): |
|
max_len = torch.max(lengths).item() |
|
ids = torch.arange(0, max_len).to(lengths.device) |
|
mask = (ids < lengths.unsqueeze(1)).bool() |
|
return mask |
|
|
|
|
|
def group_hidden_by_segs(h, seg_ids, max_len): |
|
""" |
|
|
|
:param h: [B, T, H] |
|
:param seg_ids: [B, T] |
|
:return: h_ph: [B, T_ph, H] |
|
""" |
|
B, T, H = h.shape |
|
h_gby_segs = h.new_zeros([B, max_len + 1, H]).scatter_add_(1, seg_ids[:, :, None].repeat([1, 1, H]), h) |
|
all_ones = h.new_ones(h.shape[:2]) |
|
cnt_gby_segs = h.new_zeros([B, max_len + 1]).scatter_add_(1, seg_ids, all_ones).contiguous() |
|
h_gby_segs = h_gby_segs[:, 1:] |
|
cnt_gby_segs = cnt_gby_segs[:, 1:] |
|
h_gby_segs = h_gby_segs / torch.clamp(cnt_gby_segs[:, :, None], min=1) |
|
return h_gby_segs, cnt_gby_segs |
|
|
|
def expand_by_repeat_times(source_encoding, lengths): |
|
""" |
|
source_encoding: [T, C] |
|
lengths, list of int, [T,], how many times each token should repeat |
|
return: |
|
expanded_encoding: [T_expand, C] |
|
""" |
|
hid_dim = source_encoding.shape[1] |
|
out2source = [] |
|
for i, length in enumerate(lengths): |
|
out2source += [i for _ in range(length)] |
|
out2source = torch.LongTensor(out2source).to(source_encoding.device) |
|
out2source_ = out2source[:, None].repeat([1, hid_dim]) |
|
expanded_encoding = torch.gather(source_encoding, 0, out2source_) |
|
return expanded_encoding |
|
|
|
|
|
def expand_word2ph(word_encoding, ph2word): |
|
word_encoding = F.pad(word_encoding,[0,0,1,0]) |
|
ph2word_ = ph2word[:, :, None].repeat([1, 1, word_encoding.shape[-1]]) |
|
out = torch.gather(word_encoding, 1, ph2word_) |
|
return out |
|
|