ameerazam08's picture
Upload folder using huggingface_hub
e34aada verified
raw
history blame
5.56 kB
import os
import torch
import torch.nn.functional as F
import librosa
import numpy as np
import importlib
import tqdm
import copy
import cv2
from scipy.spatial.transform import Rotation
def load_img_to_512_hwc_array(img_name):
img = cv2.imread(img_name)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (512, 512))
return img
def load_img_to_normalized_512_bchw_tensor(img_name):
img = load_img_to_512_hwc_array(img_name)
img = ((torch.tensor(img) - 127.5)/127.5).float().unsqueeze(0).permute(0, 3, 1,2) # [b,c,h,w]
return img
def mirror_index(index, len_seq):
"""
get mirror index when indexing a sequence and the index is larger than len_pose
args:
index: int
len_pose: int
return:
mirror_index: int
"""
turn = index // len_seq
res = index % len_seq
if turn % 2 == 0:
return res # forward indexing
else:
return len_seq - res - 1 # reverse indexing
def smooth_camera_sequence(camera, kernel_size=7):
"""
smooth the camera trajectory (i.e., rotation & translation)...
args:
camera: [N, 25] or [N, 16]. np.ndarray
kernel_size: int
return:
smoothed_camera: [N, 25] or [N, 16]. np.ndarray
"""
# poses: [N, 25], numpy array
N = camera.shape[0]
K = kernel_size // 2
poses = camera[:, :16].reshape([-1, 4, 4]).copy()
trans = poses[:, :3, 3].copy() # [N, 3]
rots = poses[:, :3, :3].copy() # [N, 3, 3]
for i in range(N):
start = max(0, i - K)
end = min(N, i + K + 1)
poses[i, :3, 3] = trans[start:end].mean(0)
try:
poses[i, :3, :3] = Rotation.from_matrix(rots[start:end]).mean().as_matrix()
except:
if i == 0:
poses[i, :3, :3] = rots[i]
else:
poses[i, :3, :3] = poses[i-1, :3, :3]
poses = poses.reshape([-1, 16])
camera[:, :16] = poses
return camera
def smooth_features_xd(in_tensor, kernel_size=7):
"""
smooth the feature maps
args:
in_tensor: [T, c,h,w] or [T, c1,c2,h,w]
kernel_size: int
return:
out_tensor: [T, c,h,w] or [T, c1,c2,h,w]
"""
t = in_tensor.shape[0]
ndim = in_tensor.ndim
pad = (kernel_size- 1)//2
in_tensor = torch.cat([torch.flip(in_tensor[0:pad], dims=[0]), in_tensor, torch.flip(in_tensor[t-pad:t], dims=[0])], dim=0)
if ndim == 2: # tc
_,c = in_tensor.shape
in_tensor = in_tensor.permute(1,0).reshape([-1,1,t+2*pad]) # [c, 1, t]
elif ndim == 4: # tchw
_,c,h,w = in_tensor.shape
in_tensor = in_tensor.permute(1,2,3,0).reshape([-1,1,t+2*pad]) # [c, 1, t]
elif ndim == 5: # tcchw, like deformation
_,c1,c2, h,w = in_tensor.shape
in_tensor = in_tensor.permute(1,2,3,4,0).reshape([-1,1,t+2*pad]) # [c, 1, t]
else: raise NotImplementedError()
avg_kernel = 1 / kernel_size * torch.Tensor([1.]*kernel_size).reshape([1,1,kernel_size]).float().to(in_tensor.device) # [1, 1, kw]
out_tensor = F.conv1d(in_tensor, avg_kernel)
if ndim == 2: # tc
return out_tensor.reshape([c,t]).permute(1,0)
elif ndim == 4: # tchw
return out_tensor.reshape([c,h,w,t]).permute(3,0,1,2)
elif ndim == 5: # tcchw, like deformation
return out_tensor.reshape([c1,c2,h,w,t]).permute(4,0,1,2,3)
def extract_audio_motion_from_ref_video(video_name):
def save_wav16k(audio_name):
supported_types = ('.wav', '.mp3', '.mp4', '.avi')
assert audio_name.endswith(supported_types), f"Now we only support {','.join(supported_types)} as audio source!"
wav16k_name = audio_name[:-4] + '_16k.wav'
extract_wav_cmd = f"ffmpeg -i {audio_name} -f wav -ar 16000 -v quiet -y {wav16k_name} -y"
os.system(extract_wav_cmd)
print(f"Extracted wav file (16khz) from {audio_name} to {wav16k_name}.")
return wav16k_name
def get_f0( wav16k_name):
from data_gen.process_lrs3.process_audio_mel_f0 import extract_mel_from_fname,extract_f0_from_wav_and_mel
wav, mel = extract_mel_from_fname(wav16k_name)
f0, f0_coarse = extract_f0_from_wav_and_mel(wav, mel)
f0 = f0.reshape([-1,1])
f0 = torch.tensor(f0)
return f0
def get_hubert(wav16k_name):
from data_gen.utils.process_audio.extract_hubert import get_hubert_from_16k_wav
hubert = get_hubert_from_16k_wav(wav16k_name).detach().numpy()
len_mel = hubert.shape[0]
x_multiply = 8
if len_mel % x_multiply == 0:
num_to_pad = 0
else:
num_to_pad = x_multiply - len_mel % x_multiply
hubert = np.pad(hubert, pad_width=((0,num_to_pad), (0,0)))
hubert = torch.tensor(hubert)
return hubert
def get_exp(video_name):
from data_gen.utils.process_video.fit_3dmm_landmark import fit_3dmm_for_a_video
drv_motion_coeff_dict = fit_3dmm_for_a_video(video_name, save=False)
exp = torch.tensor(drv_motion_coeff_dict['exp'])
return exp
wav16k_name = save_wav16k(video_name)
f0 = get_f0(wav16k_name)
hubert = get_hubert(wav16k_name)
os.system(f"rm {wav16k_name}")
exp = get_exp(video_name)
target_length = min(len(exp), len(hubert)//2, len(f0)//2)
exp = exp[:target_length]
f0 = f0[:target_length*2]
hubert = hubert[:target_length*2]
return exp.unsqueeze(0), hubert.unsqueeze(0), f0.unsqueeze(0)
if __name__ == '__main__':
extract_audio_motion_from_ref_video('data/raw/videos/crop_0213.mp4')