amgadhasan
commited on
Commit
·
0198bb9
1
Parent(s):
386e8e5
Update image_captioner.py
Browse files- image_captioner.py +130 -42
image_captioner.py
CHANGED
@@ -1,49 +1,136 @@
|
|
1 |
-
import os
|
2 |
-
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
3 |
import tensorflow as tf
|
4 |
-
from
|
|
|
5 |
import json
|
6 |
-
import io
|
7 |
|
8 |
|
9 |
-
|
10 |
"""
|
11 |
-
A
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
"""
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
"""
|
16 |
-
|
17 |
|
18 |
Args:
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
"""
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
"""
|
35 |
Calls the MyCustomModel instance with the given inputs.
|
36 |
|
37 |
Args:
|
38 |
-
|
|
|
|
|
39 |
|
40 |
Returns:
|
41 |
-
|
42 |
"""
|
43 |
-
|
44 |
-
|
|
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
"""
|
48 |
Generates a caption for the given image.
|
49 |
|
@@ -53,9 +140,13 @@ class ImageCaptioner():
|
|
53 |
Returns:
|
54 |
A tuple containing the indices of the predicted tokens and the attention weights sequence.
|
55 |
"""
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
59 |
|
60 |
# Get the RNN's initial state and start token for each new sample
|
61 |
# hidden_state = tf.zeros((1, 512))
|
@@ -64,18 +155,15 @@ class ImageCaptioner():
|
|
64 |
# caption_probability = 1
|
65 |
# predicted_tokens_indices = []
|
66 |
# attention_weights_sequence = []
|
67 |
-
|
68 |
-
|
69 |
-
scores = tf.ones(shape=(n_captions,))
|
70 |
#hidden = decoder.get_initial_state(batch_size=1)
|
71 |
#hiddens = self.rnn_decoder.get_initial_state(batch_size=n_captions)
|
72 |
-
|
73 |
-
|
74 |
-
#dec_input = tf.expand_dims([tokenizer.word_index['بب']], 0)
|
75 |
-
dec_inputs = tf.fill(dims=(n_captions,1), value=self.START_TOKEN_INDEX)
|
76 |
batch_indices = list(range(n_captions)) # batch size
|
77 |
-
for i in range(
|
78 |
-
logits,
|
79 |
predicted_ids = tf.random.categorical(logits, num_samples=1, dtype=tf.int32) # shape (batch_size,num_samples)
|
80 |
predicted_ids = tf.squeeze(predicted_ids, axis=-1)
|
81 |
#predicted_ids = tf.convert_to_tensor(predicted_ids, dtype=tf.int32)#tf.cast(predicted_ids, tf.int32)
|
@@ -97,7 +185,7 @@ class ImageCaptioner():
|
|
97 |
most_probable_sequence_id = int(tf.math.argmax(scores))
|
98 |
best_caption = list(results[most_probable_sequence_id].numpy())
|
99 |
print(best_caption)
|
100 |
-
eos_loc = best_caption.index(self.
|
101 |
#caption_text = tokenizer.sequences_to_texts([best_caption[:eos_loc]])
|
102 |
|
103 |
return best_caption[:eos_loc], None
|
@@ -111,4 +199,4 @@ class ImageCaptioner():
|
|
111 |
# break
|
112 |
# decoder_input = tf.expand_dims([tf.cast(predicted_token_index, tf.int32)], 0)
|
113 |
|
114 |
-
# return predicted_tokens_indices, attention_weights_sequence
|
|
|
|
|
|
|
1 |
import tensorflow as tf
|
2 |
+
from tensorflow.keras.models import load_model
|
3 |
+
import pathlib
|
4 |
import json
|
|
|
5 |
|
6 |
|
7 |
+
def load_config(path: pathlib.Path) -> pathlib.Path:
|
8 |
"""
|
9 |
+
A helper function to load a JSON config.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
path (pathlib.Path): The path to the saved model.
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
dict: The loaded config as a Python dict.
|
16 |
"""
|
17 |
+
with open(path) as f:
|
18 |
+
config = json.load(f)
|
19 |
+
|
20 |
+
return config
|
21 |
+
|
22 |
+
|
23 |
+
class Tokenizer:
|
24 |
+
def __init__(self, path: str):
|
25 |
+
self.config = load_config(path / "tokenizer_config.json")
|
26 |
+
self.tokenizer = self.load_from_json(path / "tokenizer.json")
|
27 |
+
|
28 |
+
def load_from_json(self, file_path: pathlib.Path) -> tf.keras.preprocessing.text.Tokenizer:
|
29 |
"""
|
30 |
+
A helper function to load tokenizer saved as JSON file.
|
31 |
|
32 |
Args:
|
33 |
+
file_path (pathlib.Path): The path to the tokenizer JSON file.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
tf.keras.preprocessing.text.Tokenizer: The loaded tokenizer.
|
37 |
+
"""
|
38 |
+
with open(file_path) as file:
|
39 |
+
data = json.load(file)
|
40 |
+
loaded_tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(data)
|
41 |
+
|
42 |
+
return loaded_tokenizer
|
43 |
+
|
44 |
+
class Model:
|
45 |
+
def __init__(self, path: str):
|
46 |
+
self.config = load_config(path / "model_config.json")
|
47 |
+
self.cnn = self._load_model(path / "cnn")
|
48 |
+
self.cnn_projector = self._load_model(path / "cnn_projector")
|
49 |
+
self.rnn_decoder = self._load_model(path / "decoder")
|
50 |
+
|
51 |
+
def _load_model(self, path: pathlib.Path) -> tf.keras.Model:
|
52 |
+
"""
|
53 |
+
A helper function to load a saved Keras model from the given path.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
path (pathlib.Path): The path to the saved model.
|
57 |
+
|
58 |
+
Returns:
|
59 |
+
tf.keras.Model: The loaded Keras model.
|
60 |
"""
|
61 |
+
return load_model(path)
|
62 |
+
|
63 |
+
def encode(self, images) -> tf.Tensor:
|
64 |
+
"""
|
65 |
+
Encodes the input images and returns the encoded features.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
images (tf.Tensor): The input images tensor.
|
69 |
+
|
70 |
+
Returns:
|
71 |
+
tf.Tensor: The encoded features tensor.
|
72 |
+
"""
|
73 |
+
images_features = self.cnn(images)
|
74 |
+
reshaped_features = tf.reshape(images_features, (tf.shape(images_features)[0], -1, images_features.shape[3]))
|
75 |
+
encoded_features = self.cnn_projector(reshaped_features)
|
76 |
+
|
77 |
+
return encoded_features
|
78 |
+
|
79 |
+
def decode(self, decoder_inputs, encoded_features, hidden_states) -> dict:
|
80 |
+
"""
|
81 |
+
Decodes the input and returns the logits, hidden states, and attention weights.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
decoder_inputs (tf.Tensor): The decoder input tensor.
|
85 |
+
encoded_features (tf.Tensor): The encoded features tensor.
|
86 |
+
hidden_states (tf.Tensor): The hidden states tensor.
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
dict: A dictionary containing the logits, hidden states, and attention weights.
|
90 |
+
"""
|
91 |
+
logits, hidden_states, attention_weights = self.rnn_decoder([decoder_inputs, encoded_features, hidden_states])
|
92 |
+
|
93 |
+
return {"logits": logits, "hidden_states": hidden_states, "attention_weights": attention_weights}
|
94 |
+
|
95 |
+
def __call__(self, images, decoder_inputs, hidden_states) -> dict:
|
96 |
"""
|
97 |
Calls the MyCustomModel instance with the given inputs.
|
98 |
|
99 |
Args:
|
100 |
+
images (tf.Tensor): The input images tensor.
|
101 |
+
decoder_inputs (tf.Tensor): The decoder input tensor.
|
102 |
+
hidden_states (tf.Tensor): The hidden states tensor.
|
103 |
|
104 |
Returns:
|
105 |
+
dict: A dictionary containing the logits, hidden states, and attention weights.
|
106 |
"""
|
107 |
+
encoded_features = self.encode(images)
|
108 |
+
|
109 |
+
outputs = self.decode(decoder_inputs, encoded_features, hidden_states)
|
110 |
|
111 |
+
return outputs
|
112 |
+
|
113 |
+
|
114 |
+
class ImageCaptioner():
|
115 |
+
"""
|
116 |
+
A custom class that builds the full model from the smaller sub-models. It contains a CNN for feature extraction, a CNN encoder to encode the features to a suitable dimension,
|
117 |
+
an RNN decoder that contains an attention layer and RNN layer to generate text from the last predicted token + encoded image features.
|
118 |
+
"""
|
119 |
+
def __init__(self, model_path: pathlib.Path, tokenizer_path, preprocessor):
|
120 |
+
"""
|
121 |
+
Initializes the ImageCaptioner class with the given arguments.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
path (pathlib.Path): The path to the directory containing the saved models and configuration files.
|
125 |
+
**kwargs: Additional keyword arguments that are not used in this implementation.
|
126 |
+
"""
|
127 |
+
self.preprocessor = preprocessor
|
128 |
+
|
129 |
+
self.tokenizer = Tokenizer(tokenizer_path)
|
130 |
+
|
131 |
+
self.model = Model(model_path)
|
132 |
+
|
133 |
+
def predict(self, images, max_length, num_captions=5):
|
134 |
"""
|
135 |
Generates a caption for the given image.
|
136 |
|
|
|
140 |
Returns:
|
141 |
A tuple containing the indices of the predicted tokens and the attention weights sequence.
|
142 |
"""
|
143 |
+
if not max_length or max_length > self.model.config['max_length']:
|
144 |
+
max_length = self.model.config['max_length']
|
145 |
+
|
146 |
+
images = tf.image.resize(images, self.model.config["image_size"])
|
147 |
+
images = self.preprocessor(images)
|
148 |
+
|
149 |
+
encoded_features = self.model.encode(images)
|
150 |
|
151 |
# Get the RNN's initial state and start token for each new sample
|
152 |
# hidden_state = tf.zeros((1, 512))
|
|
|
155 |
# caption_probability = 1
|
156 |
# predicted_tokens_indices = []
|
157 |
# attention_weights_sequence = []
|
158 |
+
results = tf.Variable(tf.zeros(shape=(num_captions, max_length),dtype='int32'), )
|
159 |
+
scores = tf.ones(shape=(num_captions,))
|
|
|
160 |
#hidden = decoder.get_initial_state(batch_size=1)
|
161 |
#hiddens = self.rnn_decoder.get_initial_state(batch_size=n_captions)
|
162 |
+
hidden_states = tf.zeros((num_captions, self.model.config["num_hidden_units"]))
|
163 |
+
dec_inputs = tf.fill(dims=(n_captions,1), value=self.tokenizer_config['bos_token_id'])
|
|
|
|
|
164 |
batch_indices = list(range(n_captions)) # batch size
|
165 |
+
for i in range(max_length):
|
166 |
+
logits, hidden_states, attention_weights = self.model.decode(decoder_inputs, encoded_features, hidden_states)
|
167 |
predicted_ids = tf.random.categorical(logits, num_samples=1, dtype=tf.int32) # shape (batch_size,num_samples)
|
168 |
predicted_ids = tf.squeeze(predicted_ids, axis=-1)
|
169 |
#predicted_ids = tf.convert_to_tensor(predicted_ids, dtype=tf.int32)#tf.cast(predicted_ids, tf.int32)
|
|
|
185 |
most_probable_sequence_id = int(tf.math.argmax(scores))
|
186 |
best_caption = list(results[most_probable_sequence_id].numpy())
|
187 |
print(best_caption)
|
188 |
+
eos_loc = best_caption.index(self.tokenizer_config['eos_token_id'])
|
189 |
#caption_text = tokenizer.sequences_to_texts([best_caption[:eos_loc]])
|
190 |
|
191 |
return best_caption[:eos_loc], None
|
|
|
199 |
# break
|
200 |
# decoder_input = tf.expand_dims([tf.cast(predicted_token_index, tf.int32)], 0)
|
201 |
|
202 |
+
# return predicted_tokens_indices, attention_weights_sequence
|