Updated deprecated module (#4)
Browse files- Updated deprecated module (04872c2473b68df24c5b0057236014881813f6ea)
Co-authored-by: Filip Packań <Filip-Packan@users.noreply.huggingface.co>
- ExHuBERT_model.py +451 -451
ExHuBERT_model.py
CHANGED
@@ -1,451 +1,451 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
from typing import Optional, Tuple, Union
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
from transformers import HubertForSequenceClassification
|
7 |
-
from transformers.activations import ACT2FN
|
8 |
-
from transformers.deepspeed import is_deepspeed_zero3_enabled
|
9 |
-
from transformers.file_utils import ModelOutput
|
10 |
-
from transformers.modeling_outputs import BaseModelOutput
|
11 |
-
from transformers.models.hubert import HubertConfig
|
12 |
-
from transformers.models.hubert.modeling_hubert import HubertPreTrainedModel, HubertFeatureEncoder, \
|
13 |
-
HubertFeatureProjection, _compute_mask_indices, \
|
14 |
-
HubertPositionalConvEmbedding, HubertAttention
|
15 |
-
import torch.nn.functional as F
|
16 |
-
from huggingface_hub import PyTorchModelHubMixin
|
17 |
-
|
18 |
-
######
|
19 |
-
#
|
20 |
-
#######
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
_HIDDEN_STATES_START_POSITION = 1
|
25 |
-
|
26 |
-
# General docstring
|
27 |
-
_CONFIG_FOR_DOC = "HubertConfig"
|
28 |
-
|
29 |
-
# Base docstring
|
30 |
-
_CHECKPOINT_FOR_DOC = "facebook/hubert-large-ls960-ft"
|
31 |
-
_EXPECTED_OUTPUT_SHAPE = [1, 292, 768]
|
32 |
-
|
33 |
-
# CTC docstring
|
34 |
-
_CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'"
|
35 |
-
_CTC_EXPECTED_LOSS = 22.68
|
36 |
-
|
37 |
-
# Audio class docstring
|
38 |
-
_SEQ_CLASS_CHECKPOINT = "superb/hubert-base-superb-ks"
|
39 |
-
_SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'"
|
40 |
-
_SEQ_CLASS_EXPECTED_LOSS = 8.53
|
41 |
-
|
42 |
-
HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
43 |
-
"facebook/hubert-base-ls960",
|
44 |
-
# See all Hubert models at https://huggingface.co/models?filter=hubert
|
45 |
-
]
|
46 |
-
|
47 |
-
|
48 |
-
# SwiGLU function
|
49 |
-
# From """GLU Variants Improve Transformer """
|
50 |
-
# https://doi.org/10.48550/arXiv.2002.05202
|
51 |
-
class SwiGLU(nn.Module):
|
52 |
-
def forward(self, x):
|
53 |
-
x, gate = x.chunk(2, dim=-1)
|
54 |
-
return F.silu(gate) * x
|
55 |
-
|
56 |
-
|
57 |
-
@dataclass
|
58 |
-
class SpeechClassifierOutput(ModelOutput):
|
59 |
-
"""
|
60 |
-
Speech Classifier Output dataclass
|
61 |
-
"""
|
62 |
-
loss: Optional[torch.FloatTensor] = None
|
63 |
-
logits: torch.FloatTensor = None
|
64 |
-
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
65 |
-
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
66 |
-
|
67 |
-
|
68 |
-
class ExHuBERTFeedForward(nn.Module):
|
69 |
-
def __init__(self, config):
|
70 |
-
super().__init__()
|
71 |
-
self.intermediate_dropout = nn.Dropout(config.activation_dropout)
|
72 |
-
|
73 |
-
self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
74 |
-
if isinstance(config.hidden_act, str):
|
75 |
-
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
76 |
-
else:
|
77 |
-
self.intermediate_act_fn = config.hidden_act
|
78 |
-
|
79 |
-
self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
80 |
-
self.output_dropout = nn.Dropout(config.hidden_dropout)
|
81 |
-
|
82 |
-
def forward(self, hidden_states):
|
83 |
-
hidden_states = self.intermediate_dense(hidden_states)
|
84 |
-
hidden_states = self.intermediate_act_fn(hidden_states)
|
85 |
-
hidden_states = self.intermediate_dropout(hidden_states)
|
86 |
-
|
87 |
-
hidden_states = self.output_dense(hidden_states)
|
88 |
-
hidden_states = self.output_dropout(hidden_states)
|
89 |
-
return hidden_states
|
90 |
-
|
91 |
-
|
92 |
-
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->Hubert
|
93 |
-
class ExHuBERTEncoderLayer(nn.Module):
|
94 |
-
def __init__(self, config):
|
95 |
-
super().__init__()
|
96 |
-
self.attention = HubertAttention(
|
97 |
-
embed_dim=config.hidden_size,
|
98 |
-
num_heads=config.num_attention_heads,
|
99 |
-
dropout=config.attention_dropout,
|
100 |
-
is_decoder=False,
|
101 |
-
)
|
102 |
-
self.dropout = nn.Dropout(config.hidden_dropout)
|
103 |
-
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
104 |
-
self.feed_forward = ExHuBERTFeedForward(config)
|
105 |
-
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
106 |
-
self.gate_bb_linear = nn.Linear(config.hidden_size, config.hidden_size)
|
107 |
-
|
108 |
-
def forward(
|
109 |
-
self,
|
110 |
-
hidden_states: torch.Tensor,
|
111 |
-
attention_mask: Optional[torch.Tensor] = None,
|
112 |
-
output_attentions: bool = False,
|
113 |
-
):
|
114 |
-
attn_residual = hidden_states
|
115 |
-
hidden_states = self.layer_norm(hidden_states)
|
116 |
-
hidden_states, attn_weights, _ = self.attention(
|
117 |
-
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
|
118 |
-
)
|
119 |
-
hidden_states = self.dropout(hidden_states)
|
120 |
-
hidden_states = attn_residual + hidden_states
|
121 |
-
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))
|
122 |
-
|
123 |
-
hidden_states = self.gate_bb_linear(hidden_states)
|
124 |
-
outputs = (hidden_states,)
|
125 |
-
|
126 |
-
if output_attentions:
|
127 |
-
outputs += (attn_weights,)
|
128 |
-
|
129 |
-
return outputs
|
130 |
-
|
131 |
-
|
132 |
-
class ExHuBERTEncoder(nn.Module):
|
133 |
-
def __init__(self, config):
|
134 |
-
super().__init__()
|
135 |
-
self.config = config
|
136 |
-
self.pos_conv_embed = HubertPositionalConvEmbedding(config)
|
137 |
-
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
138 |
-
self.dropout = nn.Dropout(config.hidden_dropout)
|
139 |
-
self.layers = nn.ModuleList(
|
140 |
-
[ExHuBERTEncoderLayer(config) for _ in range(config.num_hidden_layers)]
|
141 |
-
)
|
142 |
-
self.gradient_checkpointing = False
|
143 |
-
|
144 |
-
def forward(
|
145 |
-
self,
|
146 |
-
hidden_states,
|
147 |
-
attention_mask=None,
|
148 |
-
output_attentions=False,
|
149 |
-
output_hidden_states=False,
|
150 |
-
return_dict=True,
|
151 |
-
):
|
152 |
-
all_hidden_states = () if output_hidden_states else None
|
153 |
-
all_self_attentions = () if output_attentions else None
|
154 |
-
|
155 |
-
if attention_mask is not None:
|
156 |
-
# make sure padded tokens are not attended to
|
157 |
-
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
|
158 |
-
hidden_states[~expand_attention_mask] = 0
|
159 |
-
|
160 |
-
# extend attention_mask
|
161 |
-
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
|
162 |
-
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
|
163 |
-
attention_mask = attention_mask.expand(
|
164 |
-
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
|
165 |
-
)
|
166 |
-
|
167 |
-
position_embeddings = self.pos_conv_embed(hidden_states)
|
168 |
-
hidden_states = hidden_states + position_embeddings
|
169 |
-
hidden_states = self.dropout(hidden_states)
|
170 |
-
|
171 |
-
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
|
172 |
-
|
173 |
-
skip = torch.zeros_like(hidden_states)
|
174 |
-
skip_bool = False
|
175 |
-
for layer in self.layers:
|
176 |
-
|
177 |
-
if output_hidden_states:
|
178 |
-
all_hidden_states = all_hidden_states + (hidden_states,)
|
179 |
-
|
180 |
-
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
181 |
-
dropout_probability = torch.rand([])
|
182 |
-
|
183 |
-
# skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
|
184 |
-
skip_the_layer = False
|
185 |
-
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
186 |
-
# under deepspeed zero3 all gpus must run in sync
|
187 |
-
# XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication
|
188 |
-
if self.gradient_checkpointing and self.training:
|
189 |
-
# create gradient checkpointing function
|
190 |
-
def create_custom_forward(module):
|
191 |
-
def custom_forward(*inputs):
|
192 |
-
return module(*inputs, output_attentions)
|
193 |
-
|
194 |
-
return custom_forward
|
195 |
-
|
196 |
-
layer_outputs = torch.utils.checkpoint.checkpoint(
|
197 |
-
create_custom_forward(layer),
|
198 |
-
hidden_states,
|
199 |
-
attention_mask,
|
200 |
-
)
|
201 |
-
else:
|
202 |
-
layer_outputs = layer(
|
203 |
-
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
|
204 |
-
)
|
205 |
-
hidden_states = layer_outputs[0]
|
206 |
-
|
207 |
-
if skip_the_layer:
|
208 |
-
layer_outputs = (None, None)
|
209 |
-
|
210 |
-
if output_attentions:
|
211 |
-
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
212 |
-
if skip_bool is True:
|
213 |
-
hidden_states = hidden_states + skip
|
214 |
-
|
215 |
-
skip_bool = False
|
216 |
-
else:
|
217 |
-
skip = hidden_states
|
218 |
-
skip_bool = True
|
219 |
-
|
220 |
-
hidden_states = self.layer_norm(hidden_states)
|
221 |
-
|
222 |
-
if output_hidden_states:
|
223 |
-
all_hidden_states = all_hidden_states + (hidden_states,)
|
224 |
-
|
225 |
-
if not return_dict:
|
226 |
-
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
227 |
-
return BaseModelOutput(
|
228 |
-
last_hidden_state=hidden_states,
|
229 |
-
hidden_states=all_hidden_states,
|
230 |
-
attentions=all_self_attentions,
|
231 |
-
)
|
232 |
-
|
233 |
-
|
234 |
-
class ExHuBERT_model_(HubertPreTrainedModel):
|
235 |
-
def __init__(self, config: HubertConfig):
|
236 |
-
super().__init__(config)
|
237 |
-
setattr(config, 'num_hidden_layers', 48)
|
238 |
-
self.config = config
|
239 |
-
self.feature_extractor = HubertFeatureEncoder(config)
|
240 |
-
self.feature_projection = HubertFeatureProjection(config)
|
241 |
-
|
242 |
-
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
|
243 |
-
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
|
244 |
-
|
245 |
-
self.encoder = ExHuBERTEncoder(config)
|
246 |
-
|
247 |
-
# Initialize weights and apply final processing
|
248 |
-
self.post_init()
|
249 |
-
|
250 |
-
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states
|
251 |
-
def _mask_hidden_states(
|
252 |
-
self,
|
253 |
-
hidden_states: torch.FloatTensor,
|
254 |
-
mask_time_indices: Optional[torch.FloatTensor] = None,
|
255 |
-
attention_mask: Optional[torch.LongTensor] = None,
|
256 |
-
):
|
257 |
-
"""
|
258 |
-
Masks extracted features along time axis and/or along feature axis according to
|
259 |
-
[SpecAugment](https://arxiv.org/abs/1904.08779).
|
260 |
-
"""
|
261 |
-
|
262 |
-
# `config.apply_spec_augment` can set masking to False
|
263 |
-
if not getattr(self.config, "apply_spec_augment", True):
|
264 |
-
return hidden_states
|
265 |
-
|
266 |
-
# generate indices & apply SpecAugment along time axis
|
267 |
-
batch_size, sequence_length, hidden_size = hidden_states.size()
|
268 |
-
|
269 |
-
if mask_time_indices is not None:
|
270 |
-
# apply SpecAugment along time axis with given mask_time_indices
|
271 |
-
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
272 |
-
elif self.config.mask_time_prob > 0 and self.training:
|
273 |
-
mask_time_indices = _compute_mask_indices(
|
274 |
-
(batch_size, sequence_length),
|
275 |
-
mask_prob=self.config.mask_time_prob,
|
276 |
-
mask_length=self.config.mask_time_length,
|
277 |
-
attention_mask=attention_mask,
|
278 |
-
min_masks=self.config.mask_time_min_masks,
|
279 |
-
)
|
280 |
-
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
|
281 |
-
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
282 |
-
|
283 |
-
if self.config.mask_feature_prob > 0 and self.training:
|
284 |
-
# generate indices & apply SpecAugment along feature axis
|
285 |
-
mask_feature_indices = _compute_mask_indices(
|
286 |
-
(batch_size, hidden_size),
|
287 |
-
mask_prob=self.config.mask_feature_prob,
|
288 |
-
mask_length=self.config.mask_feature_length,
|
289 |
-
min_masks=self.config.mask_feature_min_masks,
|
290 |
-
)
|
291 |
-
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
|
292 |
-
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
|
293 |
-
hidden_states[mask_feature_indices] = 0
|
294 |
-
|
295 |
-
return hidden_states
|
296 |
-
|
297 |
-
def forward(
|
298 |
-
self,
|
299 |
-
input_values: Optional[torch.Tensor],
|
300 |
-
attention_mask: Optional[torch.Tensor] = None,
|
301 |
-
mask_time_indices: Optional[torch.FloatTensor] = None,
|
302 |
-
output_attentions: Optional[bool] = None,
|
303 |
-
output_hidden_states: Optional[bool] = None,
|
304 |
-
return_dict: Optional[bool] = None,
|
305 |
-
) -> Union[Tuple, BaseModelOutput]:
|
306 |
-
|
307 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
308 |
-
output_hidden_states = (
|
309 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
310 |
-
)
|
311 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
312 |
-
|
313 |
-
extract_features = self.feature_extractor(input_values)
|
314 |
-
extract_features = extract_features.transpose(1, 2)
|
315 |
-
|
316 |
-
if attention_mask is not None:
|
317 |
-
# compute reduced attention_mask corresponding to feature vectors
|
318 |
-
attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask)
|
319 |
-
|
320 |
-
hidden_states = self.feature_projection(extract_features)
|
321 |
-
hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices)
|
322 |
-
|
323 |
-
encoder_outputs = self.encoder(
|
324 |
-
hidden_states,
|
325 |
-
attention_mask=attention_mask,
|
326 |
-
output_attentions=output_attentions,
|
327 |
-
output_hidden_states=output_hidden_states,
|
328 |
-
return_dict=return_dict,
|
329 |
-
)
|
330 |
-
|
331 |
-
hidden_states = encoder_outputs[0]
|
332 |
-
|
333 |
-
if not return_dict:
|
334 |
-
return (hidden_states,) + encoder_outputs[1:]
|
335 |
-
|
336 |
-
return BaseModelOutput(
|
337 |
-
last_hidden_state=hidden_states,
|
338 |
-
hidden_states=encoder_outputs.hidden_states,
|
339 |
-
attentions=encoder_outputs.attentions,
|
340 |
-
)
|
341 |
-
|
342 |
-
|
343 |
-
class ExHuBERT(HubertPreTrainedModel,PyTorchModelHubMixin):
|
344 |
-
def __init__(self, config):
|
345 |
-
super().__init__(config)
|
346 |
-
setattr(config, "num_labels", 6)
|
347 |
-
if hasattr(config, "add_adapter") and config.add_adapter:
|
348 |
-
raise ValueError(
|
349 |
-
"Sequence classification does not support the use of Hubert adapters (config.add_adapter=True)"
|
350 |
-
)
|
351 |
-
self.hubert = ExHuBERT_model_(config)
|
352 |
-
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
|
353 |
-
if config.use_weighted_layer_sum:
|
354 |
-
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
|
355 |
-
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
|
356 |
-
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
|
357 |
-
|
358 |
-
# Initialize weights and apply final processing
|
359 |
-
self.post_init()
|
360 |
-
|
361 |
-
def freeze_feature_encoder(self):
|
362 |
-
"""
|
363 |
-
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
364 |
-
not be updated during training.
|
365 |
-
"""
|
366 |
-
self.hubert.feature_extractor._freeze_parameters()
|
367 |
-
|
368 |
-
def freeze_base_model(self):
|
369 |
-
"""
|
370 |
-
Calling this function will disable the gradient computation for the base model so that its parameters will not
|
371 |
-
be updated during training. Only the classification head will be updated.
|
372 |
-
"""
|
373 |
-
for param in self.hubert.parameters():
|
374 |
-
param.requires_grad = False
|
375 |
-
|
376 |
-
def forward(
|
377 |
-
self,
|
378 |
-
input_values: Optional[torch.Tensor],
|
379 |
-
attention_mask: Optional[torch.Tensor] = None,
|
380 |
-
output_attentions: Optional[bool] = None,
|
381 |
-
output_hidden_states: Optional[bool] = None,
|
382 |
-
return_dict: Optional[bool] = None,
|
383 |
-
labels: Optional[torch.Tensor] = None,
|
384 |
-
) -> Union[Tuple, SpeechClassifierOutput]:
|
385 |
-
r"""
|
386 |
-
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
387 |
-
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
388 |
-
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
389 |
-
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
390 |
-
"""
|
391 |
-
|
392 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
393 |
-
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
|
394 |
-
|
395 |
-
outputs = self.hubert(
|
396 |
-
input_values,
|
397 |
-
attention_mask=attention_mask,
|
398 |
-
output_attentions=output_attentions,
|
399 |
-
output_hidden_states=output_hidden_states,
|
400 |
-
return_dict=return_dict,
|
401 |
-
)
|
402 |
-
|
403 |
-
if self.config.use_weighted_layer_sum:
|
404 |
-
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
|
405 |
-
hidden_states = torch.stack(hidden_states, dim=1)
|
406 |
-
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
|
407 |
-
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
|
408 |
-
else:
|
409 |
-
hidden_states = outputs[0]
|
410 |
-
|
411 |
-
hidden_states = self.projector(hidden_states)
|
412 |
-
if attention_mask is None:
|
413 |
-
pooled_output = hidden_states.mean(dim=1)
|
414 |
-
else:
|
415 |
-
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
|
416 |
-
hidden_states[~padding_mask] = 0.0
|
417 |
-
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
|
418 |
-
|
419 |
-
logits = self.classifier(pooled_output)
|
420 |
-
|
421 |
-
loss = None
|
422 |
-
|
423 |
-
if not return_dict:
|
424 |
-
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
|
425 |
-
return ((loss,) + output) if loss is not None else output
|
426 |
-
|
427 |
-
return SpeechClassifierOutput(
|
428 |
-
loss=loss,
|
429 |
-
logits=logits,
|
430 |
-
hidden_states=outputs.hidden_states,
|
431 |
-
attentions=outputs.attentions,
|
432 |
-
)
|
433 |
-
|
434 |
-
def freeze_og_encoder(self):
|
435 |
-
for param in self.hubert.encoder.layers[::2].parameters():
|
436 |
-
param.requires_grad = False
|
437 |
-
|
438 |
-
def print_trainable_parameters(model):
|
439 |
-
'''
|
440 |
-
prints all trainable parameters of a model
|
441 |
-
'''
|
442 |
-
trainable_params = 0
|
443 |
-
all_param = 0
|
444 |
-
for _, param in model.named_parameters():
|
445 |
-
all_param += param.numel()
|
446 |
-
if param.requires_grad:
|
447 |
-
trainable_params += param.numel()
|
448 |
-
print(
|
449 |
-
f"trainable params: {trainable_params:,d} || all params: {all_param:,d} || trainable%: {100 * trainable_params / all_param:.2f}"
|
450 |
-
)
|
451 |
-
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from transformers import HubertForSequenceClassification
|
7 |
+
from transformers.activations import ACT2FN
|
8 |
+
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
|
9 |
+
from transformers.file_utils import ModelOutput
|
10 |
+
from transformers.modeling_outputs import BaseModelOutput
|
11 |
+
from transformers.models.hubert import HubertConfig
|
12 |
+
from transformers.models.hubert.modeling_hubert import HubertPreTrainedModel, HubertFeatureEncoder, \
|
13 |
+
HubertFeatureProjection, _compute_mask_indices, \
|
14 |
+
HubertPositionalConvEmbedding, HubertAttention
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from huggingface_hub import PyTorchModelHubMixin
|
17 |
+
|
18 |
+
######
|
19 |
+
#
|
20 |
+
#######
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
_HIDDEN_STATES_START_POSITION = 1
|
25 |
+
|
26 |
+
# General docstring
|
27 |
+
_CONFIG_FOR_DOC = "HubertConfig"
|
28 |
+
|
29 |
+
# Base docstring
|
30 |
+
_CHECKPOINT_FOR_DOC = "facebook/hubert-large-ls960-ft"
|
31 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 292, 768]
|
32 |
+
|
33 |
+
# CTC docstring
|
34 |
+
_CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'"
|
35 |
+
_CTC_EXPECTED_LOSS = 22.68
|
36 |
+
|
37 |
+
# Audio class docstring
|
38 |
+
_SEQ_CLASS_CHECKPOINT = "superb/hubert-base-superb-ks"
|
39 |
+
_SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'"
|
40 |
+
_SEQ_CLASS_EXPECTED_LOSS = 8.53
|
41 |
+
|
42 |
+
HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
43 |
+
"facebook/hubert-base-ls960",
|
44 |
+
# See all Hubert models at https://huggingface.co/models?filter=hubert
|
45 |
+
]
|
46 |
+
|
47 |
+
|
48 |
+
# SwiGLU function
|
49 |
+
# From """GLU Variants Improve Transformer """
|
50 |
+
# https://doi.org/10.48550/arXiv.2002.05202
|
51 |
+
class SwiGLU(nn.Module):
|
52 |
+
def forward(self, x):
|
53 |
+
x, gate = x.chunk(2, dim=-1)
|
54 |
+
return F.silu(gate) * x
|
55 |
+
|
56 |
+
|
57 |
+
@dataclass
|
58 |
+
class SpeechClassifierOutput(ModelOutput):
|
59 |
+
"""
|
60 |
+
Speech Classifier Output dataclass
|
61 |
+
"""
|
62 |
+
loss: Optional[torch.FloatTensor] = None
|
63 |
+
logits: torch.FloatTensor = None
|
64 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
65 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
66 |
+
|
67 |
+
|
68 |
+
class ExHuBERTFeedForward(nn.Module):
|
69 |
+
def __init__(self, config):
|
70 |
+
super().__init__()
|
71 |
+
self.intermediate_dropout = nn.Dropout(config.activation_dropout)
|
72 |
+
|
73 |
+
self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
74 |
+
if isinstance(config.hidden_act, str):
|
75 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
76 |
+
else:
|
77 |
+
self.intermediate_act_fn = config.hidden_act
|
78 |
+
|
79 |
+
self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
80 |
+
self.output_dropout = nn.Dropout(config.hidden_dropout)
|
81 |
+
|
82 |
+
def forward(self, hidden_states):
|
83 |
+
hidden_states = self.intermediate_dense(hidden_states)
|
84 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
85 |
+
hidden_states = self.intermediate_dropout(hidden_states)
|
86 |
+
|
87 |
+
hidden_states = self.output_dense(hidden_states)
|
88 |
+
hidden_states = self.output_dropout(hidden_states)
|
89 |
+
return hidden_states
|
90 |
+
|
91 |
+
|
92 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->Hubert
|
93 |
+
class ExHuBERTEncoderLayer(nn.Module):
|
94 |
+
def __init__(self, config):
|
95 |
+
super().__init__()
|
96 |
+
self.attention = HubertAttention(
|
97 |
+
embed_dim=config.hidden_size,
|
98 |
+
num_heads=config.num_attention_heads,
|
99 |
+
dropout=config.attention_dropout,
|
100 |
+
is_decoder=False,
|
101 |
+
)
|
102 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
103 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
104 |
+
self.feed_forward = ExHuBERTFeedForward(config)
|
105 |
+
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
106 |
+
self.gate_bb_linear = nn.Linear(config.hidden_size, config.hidden_size)
|
107 |
+
|
108 |
+
def forward(
|
109 |
+
self,
|
110 |
+
hidden_states: torch.Tensor,
|
111 |
+
attention_mask: Optional[torch.Tensor] = None,
|
112 |
+
output_attentions: bool = False,
|
113 |
+
):
|
114 |
+
attn_residual = hidden_states
|
115 |
+
hidden_states = self.layer_norm(hidden_states)
|
116 |
+
hidden_states, attn_weights, _ = self.attention(
|
117 |
+
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
|
118 |
+
)
|
119 |
+
hidden_states = self.dropout(hidden_states)
|
120 |
+
hidden_states = attn_residual + hidden_states
|
121 |
+
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))
|
122 |
+
|
123 |
+
hidden_states = self.gate_bb_linear(hidden_states)
|
124 |
+
outputs = (hidden_states,)
|
125 |
+
|
126 |
+
if output_attentions:
|
127 |
+
outputs += (attn_weights,)
|
128 |
+
|
129 |
+
return outputs
|
130 |
+
|
131 |
+
|
132 |
+
class ExHuBERTEncoder(nn.Module):
|
133 |
+
def __init__(self, config):
|
134 |
+
super().__init__()
|
135 |
+
self.config = config
|
136 |
+
self.pos_conv_embed = HubertPositionalConvEmbedding(config)
|
137 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
138 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
139 |
+
self.layers = nn.ModuleList(
|
140 |
+
[ExHuBERTEncoderLayer(config) for _ in range(config.num_hidden_layers)]
|
141 |
+
)
|
142 |
+
self.gradient_checkpointing = False
|
143 |
+
|
144 |
+
def forward(
|
145 |
+
self,
|
146 |
+
hidden_states,
|
147 |
+
attention_mask=None,
|
148 |
+
output_attentions=False,
|
149 |
+
output_hidden_states=False,
|
150 |
+
return_dict=True,
|
151 |
+
):
|
152 |
+
all_hidden_states = () if output_hidden_states else None
|
153 |
+
all_self_attentions = () if output_attentions else None
|
154 |
+
|
155 |
+
if attention_mask is not None:
|
156 |
+
# make sure padded tokens are not attended to
|
157 |
+
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
|
158 |
+
hidden_states[~expand_attention_mask] = 0
|
159 |
+
|
160 |
+
# extend attention_mask
|
161 |
+
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
|
162 |
+
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
|
163 |
+
attention_mask = attention_mask.expand(
|
164 |
+
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
|
165 |
+
)
|
166 |
+
|
167 |
+
position_embeddings = self.pos_conv_embed(hidden_states)
|
168 |
+
hidden_states = hidden_states + position_embeddings
|
169 |
+
hidden_states = self.dropout(hidden_states)
|
170 |
+
|
171 |
+
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
|
172 |
+
|
173 |
+
skip = torch.zeros_like(hidden_states)
|
174 |
+
skip_bool = False
|
175 |
+
for layer in self.layers:
|
176 |
+
|
177 |
+
if output_hidden_states:
|
178 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
179 |
+
|
180 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
181 |
+
dropout_probability = torch.rand([])
|
182 |
+
|
183 |
+
# skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
|
184 |
+
skip_the_layer = False
|
185 |
+
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
186 |
+
# under deepspeed zero3 all gpus must run in sync
|
187 |
+
# XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication
|
188 |
+
if self.gradient_checkpointing and self.training:
|
189 |
+
# create gradient checkpointing function
|
190 |
+
def create_custom_forward(module):
|
191 |
+
def custom_forward(*inputs):
|
192 |
+
return module(*inputs, output_attentions)
|
193 |
+
|
194 |
+
return custom_forward
|
195 |
+
|
196 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
197 |
+
create_custom_forward(layer),
|
198 |
+
hidden_states,
|
199 |
+
attention_mask,
|
200 |
+
)
|
201 |
+
else:
|
202 |
+
layer_outputs = layer(
|
203 |
+
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
|
204 |
+
)
|
205 |
+
hidden_states = layer_outputs[0]
|
206 |
+
|
207 |
+
if skip_the_layer:
|
208 |
+
layer_outputs = (None, None)
|
209 |
+
|
210 |
+
if output_attentions:
|
211 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
212 |
+
if skip_bool is True:
|
213 |
+
hidden_states = hidden_states + skip
|
214 |
+
|
215 |
+
skip_bool = False
|
216 |
+
else:
|
217 |
+
skip = hidden_states
|
218 |
+
skip_bool = True
|
219 |
+
|
220 |
+
hidden_states = self.layer_norm(hidden_states)
|
221 |
+
|
222 |
+
if output_hidden_states:
|
223 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
224 |
+
|
225 |
+
if not return_dict:
|
226 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
227 |
+
return BaseModelOutput(
|
228 |
+
last_hidden_state=hidden_states,
|
229 |
+
hidden_states=all_hidden_states,
|
230 |
+
attentions=all_self_attentions,
|
231 |
+
)
|
232 |
+
|
233 |
+
|
234 |
+
class ExHuBERT_model_(HubertPreTrainedModel):
|
235 |
+
def __init__(self, config: HubertConfig):
|
236 |
+
super().__init__(config)
|
237 |
+
setattr(config, 'num_hidden_layers', 48)
|
238 |
+
self.config = config
|
239 |
+
self.feature_extractor = HubertFeatureEncoder(config)
|
240 |
+
self.feature_projection = HubertFeatureProjection(config)
|
241 |
+
|
242 |
+
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
|
243 |
+
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
|
244 |
+
|
245 |
+
self.encoder = ExHuBERTEncoder(config)
|
246 |
+
|
247 |
+
# Initialize weights and apply final processing
|
248 |
+
self.post_init()
|
249 |
+
|
250 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states
|
251 |
+
def _mask_hidden_states(
|
252 |
+
self,
|
253 |
+
hidden_states: torch.FloatTensor,
|
254 |
+
mask_time_indices: Optional[torch.FloatTensor] = None,
|
255 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
256 |
+
):
|
257 |
+
"""
|
258 |
+
Masks extracted features along time axis and/or along feature axis according to
|
259 |
+
[SpecAugment](https://arxiv.org/abs/1904.08779).
|
260 |
+
"""
|
261 |
+
|
262 |
+
# `config.apply_spec_augment` can set masking to False
|
263 |
+
if not getattr(self.config, "apply_spec_augment", True):
|
264 |
+
return hidden_states
|
265 |
+
|
266 |
+
# generate indices & apply SpecAugment along time axis
|
267 |
+
batch_size, sequence_length, hidden_size = hidden_states.size()
|
268 |
+
|
269 |
+
if mask_time_indices is not None:
|
270 |
+
# apply SpecAugment along time axis with given mask_time_indices
|
271 |
+
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
272 |
+
elif self.config.mask_time_prob > 0 and self.training:
|
273 |
+
mask_time_indices = _compute_mask_indices(
|
274 |
+
(batch_size, sequence_length),
|
275 |
+
mask_prob=self.config.mask_time_prob,
|
276 |
+
mask_length=self.config.mask_time_length,
|
277 |
+
attention_mask=attention_mask,
|
278 |
+
min_masks=self.config.mask_time_min_masks,
|
279 |
+
)
|
280 |
+
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
|
281 |
+
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
282 |
+
|
283 |
+
if self.config.mask_feature_prob > 0 and self.training:
|
284 |
+
# generate indices & apply SpecAugment along feature axis
|
285 |
+
mask_feature_indices = _compute_mask_indices(
|
286 |
+
(batch_size, hidden_size),
|
287 |
+
mask_prob=self.config.mask_feature_prob,
|
288 |
+
mask_length=self.config.mask_feature_length,
|
289 |
+
min_masks=self.config.mask_feature_min_masks,
|
290 |
+
)
|
291 |
+
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
|
292 |
+
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
|
293 |
+
hidden_states[mask_feature_indices] = 0
|
294 |
+
|
295 |
+
return hidden_states
|
296 |
+
|
297 |
+
def forward(
|
298 |
+
self,
|
299 |
+
input_values: Optional[torch.Tensor],
|
300 |
+
attention_mask: Optional[torch.Tensor] = None,
|
301 |
+
mask_time_indices: Optional[torch.FloatTensor] = None,
|
302 |
+
output_attentions: Optional[bool] = None,
|
303 |
+
output_hidden_states: Optional[bool] = None,
|
304 |
+
return_dict: Optional[bool] = None,
|
305 |
+
) -> Union[Tuple, BaseModelOutput]:
|
306 |
+
|
307 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
308 |
+
output_hidden_states = (
|
309 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
310 |
+
)
|
311 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
312 |
+
|
313 |
+
extract_features = self.feature_extractor(input_values)
|
314 |
+
extract_features = extract_features.transpose(1, 2)
|
315 |
+
|
316 |
+
if attention_mask is not None:
|
317 |
+
# compute reduced attention_mask corresponding to feature vectors
|
318 |
+
attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask)
|
319 |
+
|
320 |
+
hidden_states = self.feature_projection(extract_features)
|
321 |
+
hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices)
|
322 |
+
|
323 |
+
encoder_outputs = self.encoder(
|
324 |
+
hidden_states,
|
325 |
+
attention_mask=attention_mask,
|
326 |
+
output_attentions=output_attentions,
|
327 |
+
output_hidden_states=output_hidden_states,
|
328 |
+
return_dict=return_dict,
|
329 |
+
)
|
330 |
+
|
331 |
+
hidden_states = encoder_outputs[0]
|
332 |
+
|
333 |
+
if not return_dict:
|
334 |
+
return (hidden_states,) + encoder_outputs[1:]
|
335 |
+
|
336 |
+
return BaseModelOutput(
|
337 |
+
last_hidden_state=hidden_states,
|
338 |
+
hidden_states=encoder_outputs.hidden_states,
|
339 |
+
attentions=encoder_outputs.attentions,
|
340 |
+
)
|
341 |
+
|
342 |
+
|
343 |
+
class ExHuBERT(HubertPreTrainedModel,PyTorchModelHubMixin):
|
344 |
+
def __init__(self, config):
|
345 |
+
super().__init__(config)
|
346 |
+
setattr(config, "num_labels", 6)
|
347 |
+
if hasattr(config, "add_adapter") and config.add_adapter:
|
348 |
+
raise ValueError(
|
349 |
+
"Sequence classification does not support the use of Hubert adapters (config.add_adapter=True)"
|
350 |
+
)
|
351 |
+
self.hubert = ExHuBERT_model_(config)
|
352 |
+
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
|
353 |
+
if config.use_weighted_layer_sum:
|
354 |
+
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
|
355 |
+
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
|
356 |
+
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
|
357 |
+
|
358 |
+
# Initialize weights and apply final processing
|
359 |
+
self.post_init()
|
360 |
+
|
361 |
+
def freeze_feature_encoder(self):
|
362 |
+
"""
|
363 |
+
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
364 |
+
not be updated during training.
|
365 |
+
"""
|
366 |
+
self.hubert.feature_extractor._freeze_parameters()
|
367 |
+
|
368 |
+
def freeze_base_model(self):
|
369 |
+
"""
|
370 |
+
Calling this function will disable the gradient computation for the base model so that its parameters will not
|
371 |
+
be updated during training. Only the classification head will be updated.
|
372 |
+
"""
|
373 |
+
for param in self.hubert.parameters():
|
374 |
+
param.requires_grad = False
|
375 |
+
|
376 |
+
def forward(
|
377 |
+
self,
|
378 |
+
input_values: Optional[torch.Tensor],
|
379 |
+
attention_mask: Optional[torch.Tensor] = None,
|
380 |
+
output_attentions: Optional[bool] = None,
|
381 |
+
output_hidden_states: Optional[bool] = None,
|
382 |
+
return_dict: Optional[bool] = None,
|
383 |
+
labels: Optional[torch.Tensor] = None,
|
384 |
+
) -> Union[Tuple, SpeechClassifierOutput]:
|
385 |
+
r"""
|
386 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
387 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
388 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
389 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
390 |
+
"""
|
391 |
+
|
392 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
393 |
+
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
|
394 |
+
|
395 |
+
outputs = self.hubert(
|
396 |
+
input_values,
|
397 |
+
attention_mask=attention_mask,
|
398 |
+
output_attentions=output_attentions,
|
399 |
+
output_hidden_states=output_hidden_states,
|
400 |
+
return_dict=return_dict,
|
401 |
+
)
|
402 |
+
|
403 |
+
if self.config.use_weighted_layer_sum:
|
404 |
+
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
|
405 |
+
hidden_states = torch.stack(hidden_states, dim=1)
|
406 |
+
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
|
407 |
+
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
|
408 |
+
else:
|
409 |
+
hidden_states = outputs[0]
|
410 |
+
|
411 |
+
hidden_states = self.projector(hidden_states)
|
412 |
+
if attention_mask is None:
|
413 |
+
pooled_output = hidden_states.mean(dim=1)
|
414 |
+
else:
|
415 |
+
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
|
416 |
+
hidden_states[~padding_mask] = 0.0
|
417 |
+
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
|
418 |
+
|
419 |
+
logits = self.classifier(pooled_output)
|
420 |
+
|
421 |
+
loss = None
|
422 |
+
|
423 |
+
if not return_dict:
|
424 |
+
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
|
425 |
+
return ((loss,) + output) if loss is not None else output
|
426 |
+
|
427 |
+
return SpeechClassifierOutput(
|
428 |
+
loss=loss,
|
429 |
+
logits=logits,
|
430 |
+
hidden_states=outputs.hidden_states,
|
431 |
+
attentions=outputs.attentions,
|
432 |
+
)
|
433 |
+
|
434 |
+
def freeze_og_encoder(self):
|
435 |
+
for param in self.hubert.encoder.layers[::2].parameters():
|
436 |
+
param.requires_grad = False
|
437 |
+
|
438 |
+
def print_trainable_parameters(model):
|
439 |
+
'''
|
440 |
+
prints all trainable parameters of a model
|
441 |
+
'''
|
442 |
+
trainable_params = 0
|
443 |
+
all_param = 0
|
444 |
+
for _, param in model.named_parameters():
|
445 |
+
all_param += param.numel()
|
446 |
+
if param.requires_grad:
|
447 |
+
trainable_params += param.numel()
|
448 |
+
print(
|
449 |
+
f"trainable params: {trainable_params:,d} || all params: {all_param:,d} || trainable%: {100 * trainable_params / all_param:.2f}"
|
450 |
+
)
|
451 |
+
|