{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x788b80ae6f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x788b80ae7010>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x788b80ae70a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x788b80ae7130>", "_build": "<function ActorCriticPolicy._build at 0x788b80ae71c0>", "forward": "<function ActorCriticPolicy.forward at 0x788b80ae7250>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x788b80ae72e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x788b80ae7370>", "_predict": "<function ActorCriticPolicy._predict at 0x788b80ae7400>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x788b80ae7490>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x788b80ae7520>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x788b80ae75b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x788b80ae8fc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2000896, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695204746943194958, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAMaiY77qIOY+SYoBPllnWr7h7g+84GlyPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBTjxsl9jSMAWyUTdUBjAF0lEdAq0Re+dsi0XV9lChoBkdAaLmi7kGRm2gHTZsBaAhHQKtFqjEehf11fZQoaAZHQG8+ZMURFqloB025AWgIR0CrRxsQNCqqdX2UKGgGR0BqZeDjBEa3aAdN0AFoCEdAq0iJfjS5RXV9lChoBkdAZyLsl9jPOmgHTcUBaAhHQKtKIW1MM7V1fZQoaAZHQG0kB7/n4fxoB03jAWgIR0CrS5vuG9HudX2UKGgGR0BcUuP3i704aAdN6ANoCEdAq07RlBhQWXV9lChoBkdAa0tuAqd6LWgHTcEBaAhHQKtQS3LFGXp1fZQoaAZHQG5pwTufEn9oB03mAWgIR0CrUbkNFz+4dX2UKGgGR0BuQyHwgDA8aAdN0gFoCEdAq1MYod+5OXV9lChoBkdAcHGLzf779GgHTRECaAhHQKtU042jwhJ1fZQoaAZHQGm8RgAp8WtoB03aAWgIR0CrVkDN6gM+dX2UKGgGR0BtQAPiDM/yaAdN/QFoCEdAq1gNCmdiD3V9lChoBkdAaLwZflZHNGgHTecBaAhHQKtaDWattAN1fZQoaAZHQGkheso2GZhoB03xAWgIR0CrXFEvsZ5zdX2UKGgGR0BwlMBo24usaAdN4gFoCEdAq16HC9AX23V9lChoBkdAbjkuPmxMWWgHTdMBaAhHQKtg15Sm65J1fZQoaAZHQG0OL1/Ue+5oB00eAmgIR0CrYyMVDa4+dX2UKGgGR0BupspTdcjaaAdNxQFoCEdAq2SdYnv2G3V9lChoBkdAabpUhmoR7WgHTT4CaAhHQKtmUj4YaYN1fZQoaAZHQFCoxCpm29doB03oA2gIR0CraYMPrfLtdX2UKGgGR8BIL9RrJr+HaAdNbwFoCEdAq2rIM4LkS3V9lChoBkfAGTRvWH1vl2gHTYYBaAhHQKtr94gzP8h1fZQoaAZHQGxZqmKqGURoB03/AWgIR0Crba41gpjMdX2UKGgGR0Brutk4FRpDaAdNNwJoCEdAq29PJ7sv7HV9lChoBkdAWOE0XP7emGgHTegDaAhHQKtybfw7T2F1fZQoaAZHQGj7sKb8WKxoB00FAmgIR0CrdCHvMKTjdX2UKGgGR0BqPROafBepaAdNYAJoCEdAq3Xp3cHnlnV9lChoBkdAbGiLH+6y0WgHTekBaAhHQKt3vRG+bmV1fZQoaAZHQG1/0lZ5iVloB03JAWgIR0CreX3bVSXMdX2UKGgGR0BtX40waisXaAdN6AFoCEdAq3u7AN5MUXV9lChoBkdAcIAXa8Hv+mgHTcQBaAhHQKt9uAmReTp1fZQoaAZHQHDiPgrH2h9oB021AWgIR0Crf5IBaLXMdX2UKGgGR0BsAdUfgaWHaAdNvwFoCEdAq4Gt96Tnq3V9lChoBkdAa/aLn9vS+mgHTdUBaAhHQKuDDqqwQlN1fZQoaAZHQGcBYEwFkhBoB00SAmgIR0CrhSB7VrhzdX2UKGgGR0BoPNg0CRwIaAdN1wFoCEdAq4aE/yGzr3V9lChoBkdAb7qRPoFFD2gHTRUCaAhHQKuINutwJgN1fZQoaAZHQGlKIiLVFx5oB03mAWgIR0CriawAuIykdX2UKGgGR0BqqRl4C6pYaAdN/QFoCEdAq4tZDohY/3V9lChoBkdAcCgb/ffoBGgHTZcBaAhHQKuMncKw6hh1fZQoaAZHQGZaA13t8eFoB03PAWgIR0Crji6wMYuTdX2UKGgGR0BrD8LpiZv2aAdNygFoCEdAq4+Pvv0AcXV9lChoBkdAbTogpSaVlmgHTZ4BaAhHQKuRA+fywwF1fZQoaAZHQG4PNI065oZoB02mAWgIR0CrkkPlMh5gdX2UKGgGR0BrUt+iJwbVaAdNsgFoCEdAq5OM2rGR3nV9lChoBkdAbtTkjHGS6mgHTegBaAhHQKuVLFEy+Ht1fZQoaAZHQG1W8MmWt2doB02UAWgIR0CrlrEdNnGsdX2UKGgGR0Bs52r0aqCIaAdNqQFoCEdAq5ijBO58SnV9lChoBkdAcTHY+0PYnWgHTaABaAhHQKuaXk5IYm91fZQoaAZHQG6rYnOSntRoB02nAWgIR0CrnEQ0XP7fdX2UKGgGR0BuPlyJbdJraAdNCwJoCEdAq57SOq//N3V9lChoBkdAb7KqZtvXLGgHTcEBaAhHQKugu6J66at1fZQoaAZHQGrcvJaJQ+FoB02qAWgIR0Croi1k+X7cdX2UKGgGR0BwXft2LYPHaAdNuAFoCEdAq6N8bo8p1HV9lChoBkdAb9kXgLqlg2gHTd8BaAhHQKulFHT7VKB1fZQoaAZHQGtynNX5nDloB02yAWgIR0CrpmlnRLK3dX2UKGgGR0BrphVENOM3aAdNrQFoCEdAq6favgWJrXV9lChoBkdAb31Oh0yP/GgHTYUBaAhHQKuo9Fd9lVd1fZQoaAZHQG7ER82Jiy9oB02jAWgIR0Crqiy57PY4dX2UKGgGR0BT8duHerMlaAdN6ANoCEdAq61QOH31z3V9lChoBkdAbO34O+ZgHGgHTYIBaAhHQKuuxpvgm7d1fZQoaAZHQGv9TSsr/bVoB02FAWgIR0CrsAmBFuvVdX2UKGgGR0Bvu5Mcp9ZzaAdN4AFoCEdAq7GXpljEvXV9lChoBkfAOr5LuhK15WgHTToBaAhHQKuyxPyCnP51fZQoaAZHQF2kV2icoYxoB03oA2gIR0Crtp6JIlMRdX2UKGgGR0BtmryjHn2aaAdNsQFoCEdAq7hw/xDst3V9lChoBkdAcCUSMtK7I2gHTcgBaAhHQKu6xN7Bwdd1fZQoaAZHQGpEZooNNJxoB03gAWgIR0CrvPGKIi1RdX2UKGgGR0BsURdQfp2VaAdNpgFoCEdAq781cry1/nV9lChoBkdAbRoPrfLs8mgHTcUBaAhHQKvA+7o0Q9R1fZQoaAZHQGxBfZM+NcZoB03GAWgIR0CrwllTm4iHdX2UKGgGR0Bvu6u0TlDGaAdNmAFoCEdAq8PDHAAQx3V9lChoBkdAatsogFHJ92gHTaMBaAhHQKvFEq7ROUN1fZQoaAZHQG+306o2n89oB02xAWgIR0CrxpkZ75VPdX2UKGgGR0BuXF9QXQ+maAdN8AFoCEdAq8ghj+aScXV9lChoBkdAcEoi8WbgCWgHTY4BaAhHQKvJg/vfCQ91fZQoaAZHQGvJ0Nrj5sVoB03WAWgIR0CryvFUp/gBdX2UKGgGR0Bsxkk0Jng6aAdN2gFoCEdAq8yGu1WsBHV9lChoBkdAcGo0aqCHymgHTZ0BaAhHQKvNvcAR02d1fZQoaAZHQGsMcv24/eNoB02jAWgIR0Crzwclw97odX2UKGgGR0BttbFId2gWaAdNtgFoCEdAq9B/z8P4EnV9lChoBkdAbOWojOcDsGgHTQoCaAhHQKvSDOxjawl1fZQoaAZHQGzq/PX05ENoB03tAWgIR0Cr08BScbzcdX2UKGgGR0BvX5Etuk1uaAdNqgFoCEdAq9VRSrHU+nV9lChoBkdAadhJlJ6IFmgHTRYCaAhHQKvX0a3qiXZ1fZQoaAZHQGnShomG/N9oB02/AWgIR0Cr2gJt78ekdX2UKGgGR0Buq9A5aNdaaAdNpwFoCEdAq9wz876pHnV9lChoBkdAbR8w+t8uz2gHTdQBaAhHQKveVIT4+KV1fZQoaAZHQG2Uc2aUiY9oB03RAWgIR0Cr4HcX3xnWdX2UKGgGR0Brl/nB+F10aAdN1QFoCEdAq+I3iDM/yHV9lChoBkdAbyufKZDzAmgHTb8BaAhHQKvjlt0FKTV1fZQoaAZHQG4DYbKifxtoB02nAWgIR0Cr5QkO7QLNdX2UKGgGR0Bu486/7BO6aAdN6AFoCEdAq+aFHH3lCHV9lChoBkdAbtAQCCBf8mgHTakBaAhHQKvoCCaJAMV1fZQoaAZHQE92otthuwZoB03oA2gIR0Cr60u2Zy+6dX2UKGgGR0Bt5t23azu4aAdNwwFoCEdAq+yqN6w+uHV9lChoBkdAamOOwxFiKGgHTZQBaAhHQKvt57fHggp1fZQoaAZHQG/ZpVsDW9VoB03aAWgIR0Cr74f5ULlWdX2UKGgGR8Ao5CVKPGQ0aAdNbAFoCEdAq/Cmq//Nq3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7816, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |