File size: 5,886 Bytes
41d88bd
 
3b0ab97
 
 
 
44e0588
 
a37ba34
 
 
 
 
3b0ab97
 
 
 
 
 
 
41d88bd
 
ca0021f
41d88bd
5f67597
 
 
 
 
 
 
 
 
41d88bd
ca0021f
 
 
41d88bd
 
 
ca0021f
41d88bd
70f9199
 
ca0021f
 
70f9199
ca0021f
 
41d88bd
ca0021f
41d88bd
ca0021f
 
 
41d88bd
 
 
 
ca0021f
 
 
 
41d88bd
ca0021f
 
41d88bd
 
ca0021f
 
41d88bd
 
 
ca0021f
 
41d88bd
ca0021f
 
 
41d88bd
ca0021f
 
 
41d88bd
 
 
ca0021f
41d88bd
ca0021f
 
41d88bd
ca0021f
 
 
41d88bd
ca0021f
 
 
41d88bd
93fb29f
 
41d88bd
ca0021f
eae0d35
 
 
c72cbc6
 
eae0d35
c72cbc6
eae0d35
 
 
 
 
c72cbc6
ae401f5
c72cbc6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
library_name: transformers
tags:
- text-generation-inference
- sft
- trl
- 4-bit precision
- bitsandbytes
- LoRA
- Fine-Tuning with LoRA
- LLM
- NT-GenAI
- lahnmah
datasets:
- Thaweewat/thai-med-pack
language:
- th
base_model:
- openthaigpt/openthaigpt1.5-7b-instruct
pipeline_tag: text-generation
---

# Model Card for `openthaigpt1.5-7b-medical-tuned`

![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/U0TIiWGdNaxl_9TH90gIx.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/mAZBm9Dk7-S-FQ4srj3aG.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/PgRsAWRPGw6T2tsF2aJ3W.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/lmreg4ibgBllTvzfhMeSU.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/cPJ3PWKcqwV2ynNWO1Qrs.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/mkM8VavlG9xHhgNlZ9E1X.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/MecCnAmLlYdpBjwJjMQFu.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/ijHMzw9Zrpm23o89vzsSc.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/hOIyuIA_zT7_s8SG-ZDWQ.png)

<!-- Provide a quick summary of what the model is/does. -->
This model is fine-tuned from `openthaigpt1.5-7b-instruct` using Supervised Fine-Tuning (SFT) on the `Thaweewat/thai-med-pack` dataset. The model is designed for medical question-answering tasks in Thai, specializing in providing accurate and contextual answers based on medical information. 

## Model Details

### Model Description
This model was fine-tuned using Supervised Fine-Tuning (SFT) to optimize it for medical question answering in Thai. The base model is `openthaigpt1.5-7b-instruct`, and it has been enhanced with domain-specific knowledge using the `Thaweewat/thai-med-pack` dataset.

- **Developed by:** Amornpan Phornchaicharoen
- **Fine-tuned by:** Amornpan Phornchaicharoen
- **Model type:** Causal Language Model (AutoModelForCausalLM)
- **Language(s):** Thai
- **License:** Amornpan Phornchaicharoen
- **Fine-tuned from model:** `openthaigpt1.5-7b-instruct`
- **Dataset used for fine-tuning:** `Thaweewat/thai-med-pack`

### Model Sources

- **Repository:** [Link to your Hugging Face model repository]
- **Base Model:** [Link to `openthaigpt1.5-7b-instruct` repository]
- **Dataset:** [Link to `Thaweewat/thai-med-pack` repository]

## Uses

### Direct Use
The model can be directly used for generating medical responses in Thai. It has been optimized for:
- Medical question-answering
- Providing clinical information
- Health-related dialogue generation

### Downstream Use
This model can be used as a foundational model for medical assistance systems, chatbots, and applications related to healthcare, specifically in the Thai language.

### Out-of-Scope Use
- This model should not be used for real-time diagnosis or emergency medical scenarios.
- Avoid using it for critical clinical decisions without human oversight, as the model is not intended to replace professional medical advice.

## Bias, Risks, and Limitations

### Bias
- The model might reflect biases present in the dataset, particularly when addressing underrepresented medical conditions or topics.

### Risks
- Responses may contain inaccuracies due to the inherent limitations of the model and the dataset used for fine-tuning.
- This model should not be used as the sole source of medical advice.

### Limitations
- Limited to the medical domain.
- The model is sensitive to prompts and may generate off-topic responses for non-medical queries.

## How to Get Started with the Model

Here’s how to load and use the model for generating medical responses in Thai:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the fine-tuned model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("amornpan/openthaigpt-MedChatModelv11")
model = AutoModelForCausalLM.from_pretrained("amornpan/openthaigpt-MedChatModelv11")

# Input your medical question or prompt in Thai
input_text = "ใส่คำถามทางการแพทย์ที่นี่"
inputs = tokenizer(input_text, return_tensors="pt")

# Generate the output with a higher max length or max new tokens
output = model.generate(**inputs, max_new_tokens=100, do_sample=True, temperature=0.7)

# Decode and print the generated response, skipping special tokens
print(tokenizer.decode(output[0], skip_special_tokens=True))

```
โปรดอธิบายลักษณะช่องปากที่เป็นมะเร็งในระยะเริ่มต้น

ช่องปากมะเร็งในระยะเริ่มต้น อาจไม่มีอาการชัดเจน แต่ผู้คนบางกลุ่มอาจสังเกตเห็นอาการต่อไปนี้:
- มีการกัดหรือกระแทกบริเวณช่องปากโดยไม่มีสาเหตุ
- มีจุด ฝี เมล็ด หรือความไม่เท่าเทียมภายในช่องปากที่ไม่หายวื้อ
- ปวดหรือเจ็บบริเวณช่องปาก
- เปลี่ยนแปลงสีของเนื้อเยื่อในช่องปาก (อาจเป็นสีขาว หรือ黑马)
- มีตุ่มที่ไม่หาย ภายในช่องปาก
- มีความลำบากในการกิน มี

### More Information
```amornpan@gmail.com```