Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1405.41 +/- 291.66
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f4ef6236706ea9c033f901eeed6e92cbac1b56c186ea4a1047255293d4d7230
|
3 |
+
size 129193
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5ddf981680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5ddf981710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5ddf9817a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5ddf981830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5ddf9818c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5ddf981950>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5ddf9819e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5ddf981a70>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5ddf981b00>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5ddf981b90>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5ddf981c20>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f5ddf9d0720>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1661339569.9715025,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAxTT9PSpPgL/9MDM+4J2+P8JO+r5gpVU9VwoAv5IIh7/yRZ0/31jyu17efT6Sz8Y9jN+BvzbKnz+CxSA/Z3HtPu40kT4M888/AxwrPt23tb8WPIO/nrc0PvBdVD78YypAeateP8fr5D5wodw+hWigv4pgdT5NmgS/jJsCP7GKyz6k6bG/Z5hbP4r7Db/2Ism/CKZtP32QDEDftks/XrnHvs/rhb/4Wr4/klREP0ceOT9EiAa/KtxWPz/tRj+LWpc8SGzgPI7vgD+JMDG/l4QbP3mrXj/H6+Q+cKHcPoVooL+yorM+R0n/vke9BD+dU/E/3q57v9HQsj6OtzW/S0UVPVbqnT+WE7u8K1kovlXLWz0zEde/2gcZO4FDiT4HMxS+/kysPuqE2r8jq1O/ME8EP8gwjr8zqDC/odFlvkzcmb95q14/x+vkPnCh3D6FaKC/i/tsvyJPrr8I6oW+Q+WxPa3MzT4fhHK+OZyCvj8ct73Xx5k/Iu9vPi73vb552os+dvALv2rcpb+FI0Y/IcWHv2/CmD+x8RQ+FgBhPhB9OT8boaI9rfaXP3vEXr+inknA2yiTvx0kD8Bwodw+hWigv5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAAK/pLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICOlsg9AAAAALxgAMAAAAAAhUXMvAAAAADkN/o/AAAAABJgZL0AAAAAlCPsPwAAAAA5+xY9AAAAAPbZ8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3/ZY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdbmmvQAAAADp5eG/AAAAAGtz7z0AAAAA503nPwAAAADzb489AAAAACMD3j8AAAAA6/qdPQAAAADNS+K/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZEectgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDXAqz0AAAAAkw3cvwAAAAC8sH09AAAAANHx9T8AAAAA9M0KvgAAAAA2b/Q/AAAAANIlJD0AAAAA6svcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABZ8PjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDnqAU+AAAAALyS778AAAAAu1GQPQAAAABFpeQ/AAAAAJhVlj0AAAAA9jf5PwAAAABn59u9AAAAAOlN5r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJPx6SgXdj6MAWyUTegDjAF0lEdAqNC0CtA9m3V9lChoBkdAlMIFaGHpKWgHTegDaAhHQKjRZ6KLsKN1fZQoaAZHQJKlYTewcHZoB03oA2gIR0Co0s98qnWKdX2UKGgGR0CVz+1klNUPaAdN6ANoCEdAqNNxk3CKrXV9lChoBkdAl8H5Hd43WGgHTegDaAhHQKjdly8zyjJ1fZQoaAZHQJiJ7YJ3PiVoB03oA2gIR0Co3k3531SPdX2UKGgGR0CX4pTo+wC9aAdN6ANoCEdAqN+84DLbH3V9lChoBkdAmTgK46Oo52gHTegDaAhHQKjgYGdI5HV1fZQoaAZHQJQC1p8F6iVoB03oA2gIR0Co6q6ciGFjdX2UKGgGR0CZ0x0mMOwxaAdN6ANoCEdAqOtqLl3hXXV9lChoBkdAknAcUuctoWgHTegDaAhHQKjs0LJCBwx1fZQoaAZHQJSGPguRLbpoB03oA2gIR0Co7Xsb3oLYdX2UKGgGR0CLvvKh+OOsaAdN6ANoCEdAqPgb0jC53HV9lChoBkdAk4lJz90ihWgHTegDaAhHQKj4zv60pmV1fZQoaAZHQJOtIoWpIc1oB03oA2gIR0Co+jb5M10ldX2UKGgGR0CSGHkona37aAdN6ANoCEdAqPrb+Haew3V9lChoBkdAkzFmk30f5mgHTegDaAhHQKkFN9YOlO51fZQoaAZHQJQRPyWiUPhoB03oA2gIR0CpBe3NcGC7dX2UKGgGR0CYAnoePq9oaAdN6ANoCEdAqQdKfapPynV9lChoBkdAlNb+h0yP/GgHTegDaAhHQKkH8E7GNrF1fZQoaAZHQJVvcSteUpxoB03oA2gIR0CpEgrJ0W/KdX2UKGgGR0CYalbPhQ3xaAdN6ANoCEdAqRK6lvZRK3V9lChoBkdAl/n3DR+jM2gHTegDaAhHQKkUIPikwex1fZQoaAZHQJWB9uEVWS5oB03oA2gIR0CpFMPGIbfhdX2UKGgGR0CRNOF9roGIaAdN6ANoCEdAqR8OZiNKiHV9lChoBkdAkv3+S0Sh8WgHTegDaAhHQKkfwbBGhEl1fZQoaAZHQJXi9d6cAipoB03oA2gIR0CpISlgDzRQdX2UKGgGR0CT/e912aDxaAdN6ANoCEdAqSHNCTlkpnV9lChoBkdAlVj7c0tRN2gHTegDaAhHQKksDdIGyHF1fZQoaAZHQJcc9KRMewNoB03oA2gIR0CpLMWDpTuOdX2UKGgGR0CQB8u7pV0caAdN6ANoCEdAqS4sCV8kU3V9lChoBkdAl0ILxusLfGgHTegDaAhHQKku2BreqJd1fZQoaAZHQJXF0ZccENhoB03oA2gIR0CpOR0UfxMGdX2UKGgGR0CWhTbPyCnQaAdN6ANoCEdAqTnUFINEw3V9lChoBkdAlbUCtzS1E2gHTegDaAhHQKk7NjaPCEZ1fZQoaAZHQJZYUToMa0hoB03oA2gIR0CpO9qe05U+dX2UKGgGR0CU57wy6+WXaAdN6ANoCEdAqUYS0v4/NnV9lChoBkdAl+B+O801qGgHTegDaAhHQKlGyMrEtNB1fZQoaAZHQJYCN8MNMGpoB03oA2gIR0CpSC8RUWEcdX2UKGgGR0CYxHFHJ9y+aAdN6ANoCEdAqUjPxhDw6XV9lChoBkdAloqo8QqZt2gHTegDaAhHQKlTHp4bCJp1fZQoaAZHQJarXIgeRxNoB03oA2gIR0CpU9Ouq3mWdX2UKGgGR0CVd3/yXlbNaAdN6ANoCEdAqVU50MgEEHV9lChoBkdAlq8ZFspG4WgHTegDaAhHQKlV3i8WbgF1fZQoaAZHQJVjY/W1+iJoB03oA2gIR0CpYB9SVGCqdX2UKGgGR0CW3Nm7aqS6aAdN6ANoCEdAqWDSOmzjWHV9lChoBkdAlFXLZJ04i2gHTegDaAhHQKliNmuDBdl1fZQoaAZHQJYdKFBY3ehoB03oA2gIR0CpYtpnHvMKdX2UKGgGR0CUmgc+7lJZaAdN6ANoCEdAqW0fS6UaAHV9lChoBkdAlkHB4yGi6GgHTegDaAhHQKlt1ztkWh11fZQoaAZHQJfVy3w1BMVoB03oA2gIR0CpbzzMJQchdX2UKGgGR0CXnUNWEK3NaAdN6ANoCEdAqW/ks6JZXHV9lChoBkdAmZZTLB9Cu2gHTegDaAhHQKl6Qu9vjwR1fZQoaAZHQIcuOeQMhHNoB03oA2gIR0CpevwpWmxddX2UKGgGR0CWjvRIjGDMaAdN6ANoCEdAqXxwToMa0nV9lChoBkdAliO18Ti84GgHTegDaAhHQKl9FonKGL11fZQoaAZHQJGoJczImw9oB03oA2gIR0Cph2u/DcdpdX2UKGgGR0CIklWyTpxFaAdN6ANoCEdAqYghfICEH3V9lChoBkdAjEfSOzY29GgHTegDaAhHQKmJimk30f51fZQoaAZHQJTDVB0IToNoB03oA2gIR0CpijfHo5ggdX2UKGgGR0CARPJuEVWTaAdN6ANoCEdAqZSjQZ4wAXV9lChoBkdAl5L7lFMIvGgHTegDaAhHQKmVVFQ2uPp1fZQoaAZHQJBHRJg9eQdoB03oA2gIR0Cplrd38n/ldX2UKGgGR0CQCbQw9JSSaAdN6ANoCEdAqZdaLuQZGnV9lChoBkdAmIQPZIxxk2gHTegDaAhHQKmhgJHiFTN1fZQoaAZHQJf2/7N0NjNoB03oA2gIR0CpojH31zySdX2UKGgGR0CW/J7mdRR/aAdN6ANoCEdAqaOUvkBCD3V9lChoBkdAmIN0E9t/F2gHTegDaAhHQKmkORKYiPh1fZQoaAZHQJi9bWxyGSJoB03oA2gIR0Cprn60Y0l7dX2UKGgGR0CYMn7A+IM0aAdN6ANoCEdAqa85oZhrnHV9lChoBkdAmRPbXYlIE2gHTegDaAhHQKmwoS8J2Md1fZQoaAZHQJeQ/56+nIhoB03oA2gIR0CpsUpaaCtjdX2UKGgGR0CVHw3h4t6HaAdN6ANoCEdAqbuRT4tYjnV9lChoBkdAmSQXC4z7/GgHTegDaAhHQKm8Q2a2F391fZQoaAZHQJpuWueSSvFoB03oA2gIR0Cpva7v5P/JdX2UKGgGR0CYtXWldkauaAdN6ANoCEdAqb5UjTrmhnV9lChoBkdAl6rTebd8A2gHTegDaAhHQKnIlDxb0OF1fZQoaAZHQI+NGLYPGyZoB03oA2gIR0CpyUhAGB4EdX2UKGgGR0CbAVFj/dZaaAdN6ANoCEdAqcqo5xR2sHV9lChoBkdAmzzD6JqIrWgHTegDaAhHQKnLUhRIjGF1fZQoaAZHQJCg543WFvhoB03oA2gIR0Cp1aETxoZidX2UKGgGR0CQ7PxMnJDFaAdN6ANoCEdAqdZaZKFqSHV9lChoBkdAkbBiBTXJ5mgHTegDaAhHQKnXxgOSW7h1fZQoaAZHQJEHvzcynDRoB03oA2gIR0Cp2G8twrDqdX2UKGgGR0CMnJ+yZ8a5aAdN6ANoCEdAqeK4m9g4O3V9lChoBkdAl1KscQyylmgHTegDaAhHQKnjdRMvh611fZQoaAZHQJUml7v5P/JoB03oA2gIR0Cp5N4h2W6cdX2UKGgGR0CXUOdYW+GoaAdN6ANoCEdAqeWFqk/KQ3V9lChoBkdAmfiGmxdIG2gHTegDaAhHQKnvtE7W/ah1fZQoaAZHQJk5DWZqmCRoB03oA2gIR0Cp8Gsfq5bydX2UKGgGR0CZf1fWtlqbaAdN6ANoCEdAqfHGhPCVKXV9lChoBkdAma9z3qRlpWgHTegDaAhHQKnybDxb0OF1fZQoaAZHQJbxkIldC3RoB03oA2gIR0Cp/Lun2qT9dX2UKGgGR0CYaYQcxTKlaAdN6ANoCEdAqf1u8mKIi3V9lChoBkdAlcfVawD/2mgHTegDaAhHQKn+15ylvZR1fZQoaAZHQIce5pBX0XhoB03oA2gIR0Cp/34jKPn0dX2UKGgGR0CWw+Nb1RLsaAdN6ANoCEdAqgmrf779AHV9lChoBkdAmBjdo371qWgHTegDaAhHQKoKY0Re1KJ1fZQoaAZHQJkLRAmiQDFoB03oA2gIR0CqC8EeZG8VdX2UKGgGR0CQME3i704BaAdN6ANoCEdAqgxp31SOznVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4775de0d3cb6561839e8063706c31a2e2024221d7b38532b60d467d151c34d3
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8181cfd6799f489c39ae18b30b586bb86a2f5e3bc59cf572af638bc4d3c9c489
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5ddf981680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5ddf981710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5ddf9817a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5ddf981830>", "_build": "<function ActorCriticPolicy._build at 0x7f5ddf9818c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5ddf981950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5ddf9819e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5ddf981a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5ddf981b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5ddf981b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5ddf981c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5ddf9d0720>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661339569.9715025, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAxTT9PSpPgL/9MDM+4J2+P8JO+r5gpVU9VwoAv5IIh7/yRZ0/31jyu17efT6Sz8Y9jN+BvzbKnz+CxSA/Z3HtPu40kT4M888/AxwrPt23tb8WPIO/nrc0PvBdVD78YypAeateP8fr5D5wodw+hWigv4pgdT5NmgS/jJsCP7GKyz6k6bG/Z5hbP4r7Db/2Ism/CKZtP32QDEDftks/XrnHvs/rhb/4Wr4/klREP0ceOT9EiAa/KtxWPz/tRj+LWpc8SGzgPI7vgD+JMDG/l4QbP3mrXj/H6+Q+cKHcPoVooL+yorM+R0n/vke9BD+dU/E/3q57v9HQsj6OtzW/S0UVPVbqnT+WE7u8K1kovlXLWz0zEde/2gcZO4FDiT4HMxS+/kysPuqE2r8jq1O/ME8EP8gwjr8zqDC/odFlvkzcmb95q14/x+vkPnCh3D6FaKC/i/tsvyJPrr8I6oW+Q+WxPa3MzT4fhHK+OZyCvj8ct73Xx5k/Iu9vPi73vb552os+dvALv2rcpb+FI0Y/IcWHv2/CmD+x8RQ+FgBhPhB9OT8boaI9rfaXP3vEXr+inknA2yiTvx0kD8Bwodw+hWigv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAAK/pLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICOlsg9AAAAALxgAMAAAAAAhUXMvAAAAADkN/o/AAAAABJgZL0AAAAAlCPsPwAAAAA5+xY9AAAAAPbZ8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3/ZY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdbmmvQAAAADp5eG/AAAAAGtz7z0AAAAA503nPwAAAADzb489AAAAACMD3j8AAAAA6/qdPQAAAADNS+K/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZEectgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDXAqz0AAAAAkw3cvwAAAAC8sH09AAAAANHx9T8AAAAA9M0KvgAAAAA2b/Q/AAAAANIlJD0AAAAA6svcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABZ8PjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDnqAU+AAAAALyS778AAAAAu1GQPQAAAABFpeQ/AAAAAJhVlj0AAAAA9jf5PwAAAABn59u9AAAAAOlN5r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJPx6SgXdj6MAWyUTegDjAF0lEdAqNC0CtA9m3V9lChoBkdAlMIFaGHpKWgHTegDaAhHQKjRZ6KLsKN1fZQoaAZHQJKlYTewcHZoB03oA2gIR0Co0s98qnWKdX2UKGgGR0CVz+1klNUPaAdN6ANoCEdAqNNxk3CKrXV9lChoBkdAl8H5Hd43WGgHTegDaAhHQKjdly8zyjJ1fZQoaAZHQJiJ7YJ3PiVoB03oA2gIR0Co3k3531SPdX2UKGgGR0CX4pTo+wC9aAdN6ANoCEdAqN+84DLbH3V9lChoBkdAmTgK46Oo52gHTegDaAhHQKjgYGdI5HV1fZQoaAZHQJQC1p8F6iVoB03oA2gIR0Co6q6ciGFjdX2UKGgGR0CZ0x0mMOwxaAdN6ANoCEdAqOtqLl3hXXV9lChoBkdAknAcUuctoWgHTegDaAhHQKjs0LJCBwx1fZQoaAZHQJSGPguRLbpoB03oA2gIR0Co7Xsb3oLYdX2UKGgGR0CLvvKh+OOsaAdN6ANoCEdAqPgb0jC53HV9lChoBkdAk4lJz90ihWgHTegDaAhHQKj4zv60pmV1fZQoaAZHQJOtIoWpIc1oB03oA2gIR0Co+jb5M10ldX2UKGgGR0CSGHkona37aAdN6ANoCEdAqPrb+Haew3V9lChoBkdAkzFmk30f5mgHTegDaAhHQKkFN9YOlO51fZQoaAZHQJQRPyWiUPhoB03oA2gIR0CpBe3NcGC7dX2UKGgGR0CYAnoePq9oaAdN6ANoCEdAqQdKfapPynV9lChoBkdAlNb+h0yP/GgHTegDaAhHQKkH8E7GNrF1fZQoaAZHQJVvcSteUpxoB03oA2gIR0CpEgrJ0W/KdX2UKGgGR0CYalbPhQ3xaAdN6ANoCEdAqRK6lvZRK3V9lChoBkdAl/n3DR+jM2gHTegDaAhHQKkUIPikwex1fZQoaAZHQJWB9uEVWS5oB03oA2gIR0CpFMPGIbfhdX2UKGgGR0CRNOF9roGIaAdN6ANoCEdAqR8OZiNKiHV9lChoBkdAkv3+S0Sh8WgHTegDaAhHQKkfwbBGhEl1fZQoaAZHQJXi9d6cAipoB03oA2gIR0CpISlgDzRQdX2UKGgGR0CT/e912aDxaAdN6ANoCEdAqSHNCTlkpnV9lChoBkdAlVj7c0tRN2gHTegDaAhHQKksDdIGyHF1fZQoaAZHQJcc9KRMewNoB03oA2gIR0CpLMWDpTuOdX2UKGgGR0CQB8u7pV0caAdN6ANoCEdAqS4sCV8kU3V9lChoBkdAl0ILxusLfGgHTegDaAhHQKku2BreqJd1fZQoaAZHQJXF0ZccENhoB03oA2gIR0CpOR0UfxMGdX2UKGgGR0CWhTbPyCnQaAdN6ANoCEdAqTnUFINEw3V9lChoBkdAlbUCtzS1E2gHTegDaAhHQKk7NjaPCEZ1fZQoaAZHQJZYUToMa0hoB03oA2gIR0CpO9qe05U+dX2UKGgGR0CU57wy6+WXaAdN6ANoCEdAqUYS0v4/NnV9lChoBkdAl+B+O801qGgHTegDaAhHQKlGyMrEtNB1fZQoaAZHQJYCN8MNMGpoB03oA2gIR0CpSC8RUWEcdX2UKGgGR0CYxHFHJ9y+aAdN6ANoCEdAqUjPxhDw6XV9lChoBkdAloqo8QqZt2gHTegDaAhHQKlTHp4bCJp1fZQoaAZHQJarXIgeRxNoB03oA2gIR0CpU9Ouq3mWdX2UKGgGR0CVd3/yXlbNaAdN6ANoCEdAqVU50MgEEHV9lChoBkdAlq8ZFspG4WgHTegDaAhHQKlV3i8WbgF1fZQoaAZHQJVjY/W1+iJoB03oA2gIR0CpYB9SVGCqdX2UKGgGR0CW3Nm7aqS6aAdN6ANoCEdAqWDSOmzjWHV9lChoBkdAlFXLZJ04i2gHTegDaAhHQKliNmuDBdl1fZQoaAZHQJYdKFBY3ehoB03oA2gIR0CpYtpnHvMKdX2UKGgGR0CUmgc+7lJZaAdN6ANoCEdAqW0fS6UaAHV9lChoBkdAlkHB4yGi6GgHTegDaAhHQKlt1ztkWh11fZQoaAZHQJfVy3w1BMVoB03oA2gIR0CpbzzMJQchdX2UKGgGR0CXnUNWEK3NaAdN6ANoCEdAqW/ks6JZXHV9lChoBkdAmZZTLB9Cu2gHTegDaAhHQKl6Qu9vjwR1fZQoaAZHQIcuOeQMhHNoB03oA2gIR0CpevwpWmxddX2UKGgGR0CWjvRIjGDMaAdN6ANoCEdAqXxwToMa0nV9lChoBkdAliO18Ti84GgHTegDaAhHQKl9FonKGL11fZQoaAZHQJGoJczImw9oB03oA2gIR0Cph2u/DcdpdX2UKGgGR0CIklWyTpxFaAdN6ANoCEdAqYghfICEH3V9lChoBkdAjEfSOzY29GgHTegDaAhHQKmJimk30f51fZQoaAZHQJTDVB0IToNoB03oA2gIR0CpijfHo5ggdX2UKGgGR0CARPJuEVWTaAdN6ANoCEdAqZSjQZ4wAXV9lChoBkdAl5L7lFMIvGgHTegDaAhHQKmVVFQ2uPp1fZQoaAZHQJBHRJg9eQdoB03oA2gIR0Cplrd38n/ldX2UKGgGR0CQCbQw9JSSaAdN6ANoCEdAqZdaLuQZGnV9lChoBkdAmIQPZIxxk2gHTegDaAhHQKmhgJHiFTN1fZQoaAZHQJf2/7N0NjNoB03oA2gIR0CpojH31zySdX2UKGgGR0CW/J7mdRR/aAdN6ANoCEdAqaOUvkBCD3V9lChoBkdAmIN0E9t/F2gHTegDaAhHQKmkORKYiPh1fZQoaAZHQJi9bWxyGSJoB03oA2gIR0Cprn60Y0l7dX2UKGgGR0CYMn7A+IM0aAdN6ANoCEdAqa85oZhrnHV9lChoBkdAmRPbXYlIE2gHTegDaAhHQKmwoS8J2Md1fZQoaAZHQJeQ/56+nIhoB03oA2gIR0CpsUpaaCtjdX2UKGgGR0CVHw3h4t6HaAdN6ANoCEdAqbuRT4tYjnV9lChoBkdAmSQXC4z7/GgHTegDaAhHQKm8Q2a2F391fZQoaAZHQJpuWueSSvFoB03oA2gIR0Cpva7v5P/JdX2UKGgGR0CYtXWldkauaAdN6ANoCEdAqb5UjTrmhnV9lChoBkdAl6rTebd8A2gHTegDaAhHQKnIlDxb0OF1fZQoaAZHQI+NGLYPGyZoB03oA2gIR0CpyUhAGB4EdX2UKGgGR0CbAVFj/dZaaAdN6ANoCEdAqcqo5xR2sHV9lChoBkdAmzzD6JqIrWgHTegDaAhHQKnLUhRIjGF1fZQoaAZHQJCg543WFvhoB03oA2gIR0Cp1aETxoZidX2UKGgGR0CQ7PxMnJDFaAdN6ANoCEdAqdZaZKFqSHV9lChoBkdAkbBiBTXJ5mgHTegDaAhHQKnXxgOSW7h1fZQoaAZHQJEHvzcynDRoB03oA2gIR0Cp2G8twrDqdX2UKGgGR0CMnJ+yZ8a5aAdN6ANoCEdAqeK4m9g4O3V9lChoBkdAl1KscQyylmgHTegDaAhHQKnjdRMvh611fZQoaAZHQJUml7v5P/JoB03oA2gIR0Cp5N4h2W6cdX2UKGgGR0CXUOdYW+GoaAdN6ANoCEdAqeWFqk/KQ3V9lChoBkdAmfiGmxdIG2gHTegDaAhHQKnvtE7W/ah1fZQoaAZHQJk5DWZqmCRoB03oA2gIR0Cp8Gsfq5bydX2UKGgGR0CZf1fWtlqbaAdN6ANoCEdAqfHGhPCVKXV9lChoBkdAma9z3qRlpWgHTegDaAhHQKnybDxb0OF1fZQoaAZHQJbxkIldC3RoB03oA2gIR0Cp/Lun2qT9dX2UKGgGR0CYaYQcxTKlaAdN6ANoCEdAqf1u8mKIi3V9lChoBkdAlcfVawD/2mgHTegDaAhHQKn+15ylvZR1fZQoaAZHQIce5pBX0XhoB03oA2gIR0Cp/34jKPn0dX2UKGgGR0CWw+Nb1RLsaAdN6ANoCEdAqgmrf779AHV9lChoBkdAmBjdo371qWgHTegDaAhHQKoKY0Re1KJ1fZQoaAZHQJkLRAmiQDFoB03oA2gIR0CqC8EeZG8VdX2UKGgGR0CQME3i704BaAdN6ANoCEdAqgxp31SOznVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d3d9ae80711f8c365fe1c89e9794f38551ae98086f43891564e95f80a7126c2
|
3 |
+
size 1013704
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1405.413688210523, "std_reward": 291.65751599101344, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-24T12:12:38.662106"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51087745e06dd785348e3ca9e3ed8b4248c2317dd7ea9e99e9302711c6ce404b
|
3 |
+
size 2763
|