anakin87 commited on
Commit
ce4ba3c
โ€ข
1 Parent(s): 159c797

improve readme

Browse files
Files changed (1) hide show
  1. README.md +17 -32
README.md CHANGED
@@ -51,38 +51,23 @@ gemma-2b-orpo performs well on Nous' benchmark suite (evaluation performed using
51
  is a simplified version of [`argilla/dpo-mix-7k`](https://huggingface.co/datasets/argilla/dpo-mix-7k).
52
  You can find more information [here](https://huggingface.co/alvarobartt/Mistral-7B-v0.1-ORPO#about-the-dataset).
53
 
54
- ## Model description
55
-
56
- More information needed
57
-
58
- ## Intended uses & limitations
59
-
60
- More information needed
61
-
62
- ## Training and evaluation data
63
-
64
- More information needed
65
-
66
- ## Training procedure
67
-
68
- ### Training hyperparameters
69
-
70
- The following hyperparameters were used during training:
71
- - learning_rate: 5e-05
72
- - train_batch_size: 2
73
- - eval_batch_size: 8
74
- - seed: 42
75
- - gradient_accumulation_steps: 2
76
- - total_train_batch_size: 4
77
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
78
- - lr_scheduler_type: cosine
79
- - lr_scheduler_warmup_ratio: 0.1
80
- - lr_scheduler_warmup_steps: 100
81
- - num_epochs: 3
82
-
83
- ### Training results
84
-
85
-
86
 
87
  ### Framework versions
88
 
 
51
  is a simplified version of [`argilla/dpo-mix-7k`](https://huggingface.co/datasets/argilla/dpo-mix-7k).
52
  You can find more information [here](https://huggingface.co/alvarobartt/Mistral-7B-v0.1-ORPO#about-the-dataset).
53
 
54
+ ## ๐ŸŽฎ Model in action
55
+ ### [๐Ÿ““ Examples: Chat and RAG using Haystack](./notebooks/usage.ipynb)
56
+ ### Simple text generation with Transformers
57
+ The model is small, so runs smoothly on Colab. *It is also fine to load the model using quantization*.
58
+ ```python
59
+ # pip install transformers accelerate
60
+ import torch
61
+ from transformers import pipeline
62
+ pipe = pipeline("text-generation", model="anakin87/gemma-2b-orpo", torch_dtype=torch.bfloat16, device_map="auto")
63
+ messages = [{"role": "user", "content": "Write a rap song on Vim vs VSCode."}]
64
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False)
65
+ outputs = pipe(prompt, max_new_tokens=500, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
66
+ print(outputs[0]["generated_text"])
67
+ ```
68
+ ## Training
69
+ The model was trained using HF TRL.
70
+ [๐Ÿ““ Training notebook](./notebooks/training.ipynb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
  ### Framework versions
73