anamaria1988
commited on
Commit
•
2727733
1
Parent(s):
8ddf81c
Second version of Lunar Lander - 1M training steps
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +7 -7
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 270.97 +/- 13.34
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f78e40b5170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f78e40b5200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f78e40b5290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f78e40b5320>", "_build": "<function ActorCriticPolicy._build at 0x7f78e40b53b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f78e40b5440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f78e40b54d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f78e40b5560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f78e40b55f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f78e40b5680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f78e40b5710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f78e4109240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652002470.6798933, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZdir1IQeW4JxE9u8/5vbYG3UQ7GEheOgAAgD8AAIA/M4dePcT5oT963Yo+FaPuvmZSDj3OhDo9AAAAAAAAAADtR0A+3z5JPgaQ/r1qhGu+CdzOvBrX8rsAAAAAAAAAANoYbj5cTTA92iILvMH8qrr0g84+DcSuuwAAgD8AAIA/7UVBPsV/1Dymg5M5pOFSOOv7ZT7inOC4AACAPwAAgD/AWeO+iMTtPs432T1Uw7a+W6EZvS8ktbsAAAAAAAAAAGDwMj77B+A7gvX5uxKD0LnWKnA9Q5G/ugAAgD8AAIA/Lb9tPsT64j4C0cW9opZsvi//OrxCoA48AAAAAAAAAABAa7M9wiVxP5K3rT1elJi+7okcPTYAzzwAAAAAAAAAAI34HD7PpzG8MMjXPIOeQ7sVC5298QMivAAAgD8AAIA/RVbCvhyEGz3+g6Q7xqBRuEo5+byz9eO6AACAPwAAgD/48cC+XvNDP12sn72yarW+fSkavijzdT0AAAAAAAAAAADHSj5Iuoq8hf3iOkVFE7nSSvu9UTQOugAAgD8AAIA/AEjFvI9uaLrehFs6VQE4NQqXNjoN3nu5AACAPwAAgD9dep0+lPI/Po9Qt73bcUC+OXQ1OwRJOz0AAAAAAAAAAM3Z1b3smv27EDSMug61nTzFCtq7S6KAuwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7kCd8uiWXECUhpRSlIwBbJRN6AOMAXSUR0CR6FZFG5MDdX2UKGgGaAloD0MI48KBkCxTXECUhpRSlGgVTegDaBZHQJHrHMKTjed1fZQoaAZoCWgPQwhwfVhvVEpiQJSGlFKUaBVN6ANoFkdAke0RBAv+O3V9lChoBmgJaA9DCOGYZU8CDF5AlIaUUpRoFU3oA2gWR0CSA6w7DEWJdX2UKGgGaAloD0MI/G1PkNhbV0CUhpRSlGgVTegDaBZHQJIEgxYaHbh1fZQoaAZoCWgPQwj4iQPod11gQJSGlFKUaBVN6ANoFkdAkgZj7VJ+UnV9lChoBmgJaA9DCOvhy0SRF2NAlIaUUpRoFU3oA2gWR0CSB+BreqJedX2UKGgGaAloD0MI4zREFX7cY0CUhpRSlGgVTegDaBZHQJILSdoWYWt1fZQoaAZoCWgPQwjzOXe73mpgQJSGlFKUaBVN6ANoFkdAkgvIwAU+LXV9lChoBmgJaA9DCNl4sMXuwGBAlIaUUpRoFU3oA2gWR0CSDUml67d0dX2UKGgGaAloD0MIkq0upwQPXkCUhpRSlGgVTegDaBZHQJIQsZzgdfd1fZQoaAZoCWgPQwgPYmcKnRlEQJSGlFKUaBVL8mgWR0CSHtKzRhMKdX2UKGgGaAloD0MIvoi2Y+odXUCUhpRSlGgVTegDaBZHQJIksKzAvct1fZQoaAZoCWgPQwgKn62Dg7djQJSGlFKUaBVN6ANoFkdAkimOjIq9XnV9lChoBmgJaA9DCOeJ52wBLmNAlIaUUpRoFU3oA2gWR0CSMj5mRNh3dX2UKGgGaAloD0MII6MDkjC2YECUhpRSlGgVTegDaBZHQJI2HJQtSQ51fZQoaAZoCWgPQwinJVZGIzNgQJSGlFKUaBVN6ANoFkdAkjq4zabnYHV9lChoBmgJaA9DCCgn2lVI6WFAlIaUUpRoFU3oA2gWR0CSPFi5d4VzdX2UKGgGaAloD0MIYyZRL3hqYkCUhpRSlGgVTegDaBZHQJI/S5SWJJp1fZQoaAZoCWgPQwiFeCRenhVkQJSGlFKUaBVN6ANoFkdAkkF71mJ3xHV9lChoBmgJaA9DCJ8hHLPsE2BAlIaUUpRoFU3oA2gWR0CSWe8VHnU2dX2UKGgGaAloD0MIfEj43t/FYECUhpRSlGgVTegDaBZHQJJazQSi/PB1fZQoaAZoCWgPQwhh+8kYH3dgQJSGlFKUaBVN6ANoFkdAklzJMtbs4XV9lChoBmgJaA9DCKtcqPxrkl1AlIaUUpRoFU3oA2gWR0CSXljDsMRZdX2UKGgGaAloD0MIqkavBigDVkCUhpRSlGgVTegDaBZHQJL8DXxvvSd1fZQoaAZoCWgPQwiASL99HchcQJSGlFKUaBVN6ANoFkdAkv4wh4dIXnV9lChoBmgJaA9DCDqy8stgN1xAlIaUUpRoFU3oA2gWR0CTAeYTCcgAdX2UKGgGaAloD0MIqkavBii9HsCUhpRSlGgVS/5oFkdAkwuhpUPxx3V9lChoBmgJaA9DCF0av/DKVmJAlIaUUpRoFU3oA2gWR0CTD/J/5LyudX2UKGgGaAloD0MIY0FhUKYxQMCUhpRSlGgVTRgBaBZHQJMSi31BdD91fZQoaAZoCWgPQwiYw+47hkZaQJSGlFKUaBVN6ANoFkdAkxVVPznRs3V9lChoBmgJaA9DCA/vObAcBmFAlIaUUpRoFU3oA2gWR0CTGaLxI8QqdX2UKGgGaAloD0MIpS+EnPfgYUCUhpRSlGgVTegDaBZHQJMhfQzDXOJ1fZQoaAZoCWgPQwiuKCUEqzdfQJSGlFKUaBVN6ANoFkdAkyUnLA57xHV9lChoBmgJaA9DCH+GN2vwS2FAlIaUUpRoFU3oA2gWR0CTKayU9pyqdX2UKGgGaAloD0MInBa86KuSYkCUhpRSlGgVTegDaBZHQJMrUkleF+N1fZQoaAZoCWgPQwiGVbyR+XVhQJSGlFKUaBVN6ANoFkdAky5hlg+hXnV9lChoBmgJaA9DCEnW4egq8lVAlIaUUpRoFU3oA2gWR0CTMIHSnccmdX2UKGgGaAloD0MIz57L1CRwLkCUhpRSlGgVS9ZoFkdAkz/e6d1+zHV9lChoBmgJaA9DCKERbFx/+2JAlIaUUpRoFU3oA2gWR0CTR4oq0+khdX2UKGgGaAloD0MI/wWCABmWYECUhpRSlGgVTegDaBZHQJNIVEkSmIl1fZQoaAZoCWgPQwgktybdlpNjQJSGlFKUaBVN6ANoFkdAk0txeLNwBHV9lChoBmgJaA9DCINOCB10r2dAlIaUUpRoFU2mAWgWR0CTTv09hZyNdX2UKGgGaAloD0MIi4f3HNjSY0CUhpRSlGgVTegDaBZHQJNQ2ArhBJJ1fZQoaAZoCWgPQwjNV8nHbiVkQJSGlFKUaBVN6ANoFkdAk1Ree8PFvXV9lChoBmgJaA9DCDCgF+5cJWFAlIaUUpRoFU3oA2gWR0CTXg6reZXudX2UKGgGaAloD0MI4Ln3cEkQYECUhpRSlGgVTegDaBZHQJNiGo/A0sR1fZQoaAZoCWgPQwim07oNajFcQJSGlFKUaBVN6ANoFkdAk2Sz7/GVA3V9lChoBmgJaA9DCFKAKJgxx2FAlIaUUpRoFU3oA2gWR0CTZ2AJb+tKdX2UKGgGaAloD0MI0vwxrU2SWkCUhpRSlGgVTegDaBZHQJNrl22XsxB1fZQoaAZoCWgPQwgSFhVxuilhQJSGlFKUaBVN6ANoFkdAk3NCGvfTC3V9lChoBmgJaA9DCMy0/SsrDSNAlIaUUpRoFU0fAWgWR0CTdOOKfnOjdX2UKGgGaAloD0MI/kgRGValM0CUhpRSlGgVS/VoFkdAk3Wop2ECeXV9lChoBmgJaA9DCJhokIIngmFAlIaUUpRoFU3oA2gWR0CTdsR3u/lAdX2UKGgGaAloD0MIGmt/Z3udWECUhpRSlGgVTegDaBZHQJN7DNjbzsh1fZQoaAZoCWgPQwgVkWEVb71dQJSGlFKUaBVN6ANoFkdAk4HfQnhKlHV9lChoBmgJaA9DCEgZcQFofC1AlIaUUpRoFUvpaBZHQJOH4ImgJ1J1fZQoaAZoCWgPQwgyHqUSnr5dQJSGlFKUaBVN6ANoFkdAk5LhwdbPhXV9lChoBmgJaA9DCGVTrvAud2BAlIaUUpRoFU3oA2gWR0CTmuLDQ7cPdX2UKGgGaAloD0MIz0vFxryMRUCUhpRSlGgVTegDaBZHQJObsqc3EQ51fZQoaAZoCWgPQwhAFTduMatBwJSGlFKUaBVL52gWR0CTnek0rK/3dX2UKGgGaAloD0MIoidlUkNdWkCUhpRSlGgVTegDaBZHQJOfAgmqo611fZQoaAZoCWgPQwgsZ++MNv5gQJSGlFKUaBVN6ANoFkdAk6Kn+IdlunV9lChoBmgJaA9DCNVbA1ulTGFAlIaUUpRoFU3oA2gWR0CTpH/XGwRodX2UKGgGaAloD0MIHAqfrQNBYkCUhpRSlGgVTegDaBZHQJRCR8IAwPB1fZQoaAZoCWgPQwixGktYG8tbQJSGlFKUaBVN6ANoFkdAlFKwC8vmHXV9lChoBmgJaA9DCCKMn8Y9KGFAlIaUUpRoFU3oA2gWR0CUVZ2criEQdX2UKGgGaAloD0MImgZF8wBGYkCUhpRSlGgVTegDaBZHQJRaeptJnQJ1fZQoaAZoCWgPQwi6Z12j5fhfQJSGlFKUaBVN6ANoFkdAlGKV6NVBEHV9lChoBmgJaA9DCBgFwePbjF1AlIaUUpRoFU3oA2gWR0CUZQH4GlhxdX2UKGgGaAloD0MIXHLcKZ1cY0CUhpRSlGgVTegDaBZHQJRmBdIGyHF1fZQoaAZoCWgPQwhhw9MrZeBdQJSGlFKUaBVN6ANoFkdAlGnMkD6nBXV9lChoBmgJaA9DCBo09E9wsGFAlIaUUpRoFU3oA2gWR0CUb9ilBQendX2UKGgGaAloD0MI6KT3ja8ZN0CUhpRSlGgVS/hoFkdAlHcH5WRzR3V9lChoBmgJaA9DCLNEZ5lF51xAlIaUUpRoFU3oA2gWR0CUfjfrrxAjdX2UKGgGaAloD0MIclKY9zjTXkCUhpRSlGgVTegDaBZHQJSEwdbPhQ51fZQoaAZoCWgPQwgxYTQr24JdQJSGlFKUaBVN6ANoFkdAlIV8m0E5hnV9lChoBmgJaA9DCKq1MAttCWJAlIaUUpRoFU3oA2gWR0CUh1hakhzOdX2UKGgGaAloD0MI75I4KyIGYkCUhpRSlGgVTegDaBZHQJSIJw97ngZ1fZQoaAZoCWgPQwhtOgK42T9gQJSGlFKUaBVN6ANoFkdAlIsAXhwVCXV9lChoBmgJaA9DCOZciqvKcFtAlIaUUpRoFU3oA2gWR0CUjIQdjoZAdX2UKGgGaAloD0MIWqDdIcUDZECUhpRSlGgVTegDaBZHQJSPUYR/ViF1fZQoaAZoCWgPQwjQJRx6C4xgQJSGlFKUaBVN6ANoFkdAlJ2/Cl7+k3V9lChoBmgJaA9DCGpsrwU9WGJAlIaUUpRoFU3oA2gWR0CUoH89Oh0ydX2UKGgGaAloD0MI6wJeZtj8YUCUhpRSlGgVTegDaBZHQJSk0cvM8ox1fZQoaAZoCWgPQwgVOxqH+k1iQJSGlFKUaBVN6ANoFkdAlKxh2nsLOXV9lChoBmgJaA9DCD547dKGZ15AlIaUUpRoFU3oA2gWR0CUsA0lZ5iWdX2UKGgGaAloD0MIldQJaKLmZkCUhpRSlGgVTegDaBZHQJS0V4NZvDR1fZQoaAZoCWgPQwgviEhNuzgRQJSGlFKUaBVL+GgWR0CUuMFKkEcLdX2UKGgGaAloD0MITRO2n4znYUCUhpRSlGgVTegDaBZHQJS698twrDt1fZQoaAZoCWgPQwiJl6dzReptQJSGlFKUaBVNZgFoFkdAlLzig9Net3V9lChoBmgJaA9DCOWZl8PubmNAlIaUUpRoFU3oA2gWR0CUwcbPyCnQdX2UKGgGaAloD0MIKnKIuDloY0CUhpRSlGgVTegDaBZHQJTIG3UhFE11fZQoaAZoCWgPQwgzpmCNs/FgQJSGlFKUaBVN6ANoFkdAlM4jGLk0anV9lChoBmgJaA9DCKtALQaPE2BAlIaUUpRoFU3oA2gWR0CUztO9FnZkdX2UKGgGaAloD0MIu0bLgR5UY0CUhpRSlGgVTegDaBZHQJTQhp0wJw91fZQoaAZoCWgPQwgnol9bP8tbQJSGlFKUaBVN6ANoFkdAlNFUOqebu3V9lChoBmgJaA9DCMVU+glnyV1AlIaUUpRoFU3oA2gWR0CU0/zZHuqndX2UKGgGaAloD0MIl3DoLR4xX0CUhpRSlGgVTegDaBZHQJTVclC1JDp1fZQoaAZoCWgPQwhYchWLX6thQJSGlFKUaBVN6ANoFkdAlNhfGyX2NHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f78e40b5170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f78e40b5200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f78e40b5290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f78e40b5320>", "_build": "<function ActorCriticPolicy._build at 0x7f78e40b53b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f78e40b5440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f78e40b54d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f78e40b5560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f78e40b55f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f78e40b5680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f78e40b5710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f78e4109240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652005128.6047041, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNNlL3XgzS52kxZPV/sLTJQTRS7oXsANAAAgD8AAIA/LUU9PlTzYT9boVs+LPH6vucAPj6DDb+7AAAAAAAAAAANdAm+pCVqu3hGYjs14aU4lamUPLHyiroAAIA/AACAP2DHrL4uE5A/e4Wpvm057b4cegC/DjItvAAAAAAAAAAAQP6NPRJLqTzZejK9eteLviJAhjsvsiC9AAAAAAAAAACa4Km8NuBmPwO0XL0T5R6/HtORvUNpqDwAAAAAAAAAALNzGT720SK8u0utOw1gNbqzYIm9U0sCuwAAgD8AAIA/+u93PqP6Qj+A5hA+yc4Ev6CiFD+Iy9U9AAAAAAAAAADmIJE9BRSHu7suPr65fy6+woUWPBKYKj8AAIA/AACAP12CZL4lLLU/OaEivxtTvL6ur6G+ST6BvgAAAAAAAAAAptQdPs8lcD9C+yM+F7Ujv32BCz4jE1i9AAAAAAAAAADz7RW+HEJAvB2PFjpAxHw4bcOiPbabWbkAAIA/AACAP6CTOb4ngQQ/J3iUPW3nAr9QWum9FfEBPgAAAAAAAAAAgOAXvRSyo7r6iSs8DfM9PLfy8TrmmCi9AACAPwAAgD8ADBG81Zm1P19Tkr7AJ7g9IVGBO045irwAAAAAAAAAAICeDr32fHS6SsGSPIoltLIlw3a6w6bbMgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKNNocrGucECUhpRSlIwBbJRLqYwBdJRHQLKDUk6tDD11fZQoaAZoCWgPQwidD88S5GtuQJSGlFKUaBVLzmgWR0Cyg1QiNbTudX2UKGgGaAloD0MIe/gyUQSZckCUhpRSlGgVS/9oFkdAsoPnTd+G5HV9lChoBmgJaA9DCHe+nxrvAXJAlIaUUpRoFUvaaBZHQLKD9qjJuEV1fZQoaAZoCWgPQwgl6ZrJt8NxQJSGlFKUaBVL52gWR0Cyg/ks8PnTdX2UKGgGaAloD0MIMqzijYyWckCUhpRSlGgVS+FoFkdAsoQoRL9MsnV9lChoBmgJaA9DCKSpnsw/E3NAlIaUUpRoFUvqaBZHQLKETCI1tO51fZQoaAZoCWgPQwh9sffiCy9wQJSGlFKUaBVLpmgWR0CyhGknb7CSdX2UKGgGaAloD0MImboru2Dob0CUhpRSlGgVS8loFkdAsoSKeHzpYHV9lChoBmgJaA9DCHhBRGra+G5AlIaUUpRoFUuyaBZHQLKErOJtSAJ1fZQoaAZoCWgPQwg/An/4eSFzQJSGlFKUaBVL5WgWR0CyhKU+5e7ddX2UKGgGaAloD0MIQs9m1edgcUCUhpRSlGgVS8JoFkdAsoS5KqXF+HV9lChoBmgJaA9DCHHGMCfoWnJAlIaUUpRoFUvmaBZHQLKEzcqe9SN1fZQoaAZoCWgPQwiuDoC4a75yQJSGlFKUaBVL92gWR0CyhM/I8yN5dX2UKGgGaAloD0MIXhH8b2WZcECUhpRSlGgVS8ZoFkdAsoT5qnFYMnV9lChoBmgJaA9DCK3boPab+HJAlIaUUpRoFUvYaBZHQLKFG1gpjMF1fZQoaAZoCWgPQwhZw0Xu6XNwQJSGlFKUaBVLn2gWR0CyhXjDjzZpdX2UKGgGaAloD0MI7ISX4JRNc0CUhpRSlGgVS8NoFkdAsoWbJ5mh/XV9lChoBmgJaA9DCHNIaqFk13JAlIaUUpRoFUu6aBZHQLKF4hx5s0p1fZQoaAZoCWgPQwipMoy7Ab1yQJSGlFKUaBVL92gWR0Cyhhcz2vjfdX2UKGgGaAloD0MIgT/8/DemcECUhpRSlGgVTQQBaBZHQLKGJlwLmZF1fZQoaAZoCWgPQwhrn47HjKVyQJSGlFKUaBVLvGgWR0Cyhk5L/S6UdX2UKGgGaAloD0MIBaInZZLuckCUhpRSlGgVS9poFkdAsoZxx1gYxnV9lChoBmgJaA9DCAhagSGrRXJAlIaUUpRoFUvuaBZHQLKGfn6Eal11fZQoaAZoCWgPQwjnwkgvKj1xQJSGlFKUaBVLq2gWR0CyhoBh+fAcdX2UKGgGaAloD0MIxk/j3jyfcECUhpRSlGgVS8toFkdAsoaBrvb48HV9lChoBmgJaA9DCL0cdt8x/mBAlIaUUpRoFU3oA2gWR0CyhpihnJ1adX2UKGgGaAloD0MIjj9R2bA5YUCUhpRSlGgVTegDaBZHQLKGsnxri2l1fZQoaAZoCWgPQwh8DixHCBZxQJSGlFKUaBVL1mgWR0CyhqvBrN4adX2UKGgGaAloD0MIx/FDpdFWckCUhpRSlGgVS9hoFkdAsoavZFocrHV9lChoBmgJaA9DCEnajT5mDXNAlIaUUpRoFUv8aBZHQLKGyoduHet1fZQoaAZoCWgPQwg9murJfNFyQJSGlFKUaBVL8WgWR0Cyhx7qD9OzdX2UKGgGaAloD0MI1v85zBe5ckCUhpRSlGgVS8hoFkdAsodBymygPHV9lChoBmgJaA9DCH3p7c/F0nBAlIaUUpRoFUvvaBZHQLKHcDDTBqN1fZQoaAZoCWgPQwhYxRuZRzdxQJSGlFKUaBVLzmgWR0Cyh7wQYk3TdX2UKGgGaAloD0MIW+1hL9TEckCUhpRSlGgVS+5oFkdAsofExpL26HV9lChoBmgJaA9DCMnJxK1CsnFAlIaUUpRoFUvdaBZHQLKHzf6oESx1fZQoaAZoCWgPQwjToGgegNhyQJSGlFKUaBVLwGgWR0Cyh+BuwX67dX2UKGgGaAloD0MIdsWM8LYeckCUhpRSlGgVS9ZoFkdAsofwPCl7+nV9lChoBmgJaA9DCJWcE3sowHFAlIaUUpRoFUuraBZHQLKH60eEIxB1fZQoaAZoCWgPQwhi+IiY0pByQJSGlFKUaBVLxWgWR0Cyh/S7f51vdX2UKGgGaAloD0MID39N1iicckCUhpRSlGgVS7doFkdAsogHuCwr2HV9lChoBmgJaA9DCMAEbt1NK3BAlIaUUpRoFUvDaBZHQLKIA+3H7xd1fZQoaAZoCWgPQwiKq8q+qx9zQJSGlFKUaBVL5WgWR0CyiC1UVBUrdX2UKGgGaAloD0MISkBMwgXscUCUhpRSlGgVS81oFkdAsogtInSfDnV9lChoBmgJaA9DCHGNz2R/x3JAlIaUUpRoFUvpaBZHQLKINQTEit91fZQoaAZoCWgPQwiOWfYkMMZwQJSGlFKUaBVNBAFoFkdAsoitCMPz4HV9lChoBmgJaA9DCNTuVwH+uHBAlIaUUpRoFUvwaBZHQLKI4vKlpGp1fZQoaAZoCWgPQwjuYMQ+wW5xQJSGlFKUaBVNAAFoFkdAsokqXb/OuHV9lChoBmgJaA9DCCAIkKGjVXFAlIaUUpRoFUu6aBZHQLKJLjHn2Zl1fZQoaAZoCWgPQwhdTgmISRV0QJSGlFKUaBVL8WgWR0CyiTz1f3N+dX2UKGgGaAloD0MIVB9I3jn2b0CUhpRSlGgVS7hoFkdAsolMcsDnvHV9lChoBmgJaA9DCOLnvwcvKXBAlIaUUpRoFUuuaBZHQLKJUFQl8gJ1fZQoaAZoCWgPQwjoaiv2F9JwQJSGlFKUaBVL0GgWR0CyiVHDm8ujdX2UKGgGaAloD0MIuf/IdChBcUCUhpRSlGgVS89oFkdAsolzFKkEcXV9lChoBmgJaA9DCIEKR5DKOXJAlIaUUpRoFUvtaBZHQLKJf5paibl1fZQoaAZoCWgPQwg4+S06GcxyQJSGlFKUaBVL4mgWR0CyiYvvF3pwdX2UKGgGaAloD0MIrWwf8tarcECUhpRSlGgVS7VoFkdAsomPTvy9VXV9lChoBmgJaA9DCCxF8pXA8HJAlIaUUpRoFUvJaBZHQLKJqhJiAlR1fZQoaAZoCWgPQwhsXtVZLX1zQJSGlFKUaBVL6GgWR0Cyibuj/MnrdX2UKGgGaAloD0MI2SH+YUuhckCUhpRSlGgVS/toFkdAsonKuMdcS3V9lChoBmgJaA9DCBPWxtgJXXFAlIaUUpRoFUvxaBZHQLKJ8flIVdp1fZQoaAZoCWgPQwj0F3rE6NBvQJSGlFKUaBVLt2gWR0CyijvV3EAHdX2UKGgGaAloD0MI4q/JGnXzckCUhpRSlGgVS8NoFkdAsoqxG+bmVHV9lChoBmgJaA9DCErRyr1Au3NAlIaUUpRoFUvDaBZHQLKKxslsxfx1fZQoaAZoCWgPQwj/7EeKCMBwQJSGlFKUaBVL1mgWR0CyisulbeMydX2UKGgGaAloD0MINxjqsEJ4cUCUhpRSlGgVS8JoFkdAsorGuU2UCHV9lChoBmgJaA9DCMdI9gg1m29AlIaUUpRoFUuyaBZHQLKK2ZU1hst1fZQoaAZoCWgPQwidhNIXwtlwQJSGlFKUaBVL42gWR0CyiuTNMXabdX2UKGgGaAloD0MImYQLeQRmbkCUhpRSlGgVS8RoFkdAsosOPKdQPHV9lChoBmgJaA9DCOrouBrZxHJAlIaUUpRoFUvVaBZHQLKLFYoRZlp1fZQoaAZoCWgPQwgvbw7X6u1yQJSGlFKUaBVLx2gWR0CyixkipvP1dX2UKGgGaAloD0MIhnMNMzQocUCUhpRSlGgVS7loFkdAsosvGwRoRXV9lChoBmgJaA9DCGuduBzv2nBAlIaUUpRoFUvRaBZHQLKLcTnq3Vl1fZQoaAZoCWgPQwh2UInr2ItyQJSGlFKUaBVL0WgWR0Cyi5xWcSXddX2UKGgGaAloD0MI7l9ZaRJacECUhpRSlGgVS7ZoFkdAsou3uZ1FIHV9lChoBmgJaA9DCBprf2c7VXJAlIaUUpRoFUuqaBZHQLKME/wAlv91fZQoaAZoCWgPQwi86CtIs+VuQJSGlFKUaBVLtWgWR0CyjFkkOZssdX2UKGgGaAloD0MIqG3DKAgVdECUhpRSlGgVS8toFkdAsox7jABT43V9lChoBmgJaA9DCDV6NUBpR3FAlIaUUpRoFUvhaBZHQLKMsXt0FKV1fZQoaAZoCWgPQwgDCvX0EdZwQJSGlFKUaBVLzmgWR0CyjNo9s7+2dX2UKGgGaAloD0MIh+EjYgrscUCUhpRSlGgVS9loFkdAsoz8L7XQMXV9lChoBmgJaA9DCME5I0q7aXFAlIaUUpRoFUv5aBZHQLKNDlVtGd91fZQoaAZoCWgPQwjqknGM5NtxQJSGlFKUaBVNBAFoFkdAso0Oh0yP/HV9lChoBmgJaA9DCPyO4bHfEHNAlIaUUpRoFUvdaBZHQLKNHxC6Ymd1fZQoaAZoCWgPQwhYdOs1vXRzQJSGlFKUaBVL7WgWR0CyjR/ZRKpUdX2UKGgGaAloD0MImntI+F75cUCUhpRSlGgVS8xoFkdAso1u8Gs3hnV9lChoBmgJaA9DCPIGmPkOknJAlIaUUpRoFUvxaBZHQLKNk0HQhOh1fZQoaAZoCWgPQwhNvtnmxvFwQJSGlFKUaBVL4WgWR0CyjbozN2TxdX2UKGgGaAloD0MIPujZrHpCb0CUhpRSlGgVS6hoFkdAso34vrWy1XV9lChoBmgJaA9DCP0VMlcG6XJAlIaUUpRoFUvZaBZHQLKOBv+OwPl1fZQoaAZoCWgPQwjHEAAce6NwQJSGlFKUaBVLwWgWR0CyjhDuF6AwdX2UKGgGaAloD0MI1LoNaj+scECUhpRSlGgVS9FoFkdAso6KFj/dZnV9lChoBmgJaA9DCIUJo1nZ5HFAlIaUUpRoFUvYaBZHQLKOxM8ox591fZQoaAZoCWgPQwiqKck6nNVxQJSGlFKUaBVLvWgWR0Cyjscyi22HdX2UKGgGaAloD0MI8ztNZnwidECUhpRSlGgVS81oFkdAso7aa5PM0XV9lChoBmgJaA9DCHpx4qvdC3BAlIaUUpRoFUvNaBZHQLKO6wqRU3p1fZQoaAZoCWgPQwjIW65+rM9yQJSGlFKUaBVL1mgWR0Cyju5yU9pzdX2UKGgGaAloD0MIUcHhBRF/cUCUhpRSlGgVS+RoFkdAso7+W3Sa3XV9lChoBmgJaA9DCJUO1v/5/nFAlIaUUpRoFUvMaBZHQLKPPIatLct1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 470, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3bbf0fb04c5f1066a05a87ee9cc36c209d879659bc80c6716ef9aaf19da228e
|
3 |
+
size 143989
|
ppo-LunarLander-v2/data
CHANGED
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,16 +66,16 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 2048,
|
80 |
"gamma": 0.99,
|
81 |
"gae_lambda": 0.95,
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1652005128.6047041,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNNlL3XgzS52kxZPV/sLTJQTRS7oXsANAAAgD8AAIA/LUU9PlTzYT9boVs+LPH6vucAPj6DDb+7AAAAAAAAAAANdAm+pCVqu3hGYjs14aU4lamUPLHyiroAAIA/AACAP2DHrL4uE5A/e4Wpvm057b4cegC/DjItvAAAAAAAAAAAQP6NPRJLqTzZejK9eteLviJAhjsvsiC9AAAAAAAAAACa4Km8NuBmPwO0XL0T5R6/HtORvUNpqDwAAAAAAAAAALNzGT720SK8u0utOw1gNbqzYIm9U0sCuwAAgD8AAIA/+u93PqP6Qj+A5hA+yc4Ev6CiFD+Iy9U9AAAAAAAAAADmIJE9BRSHu7suPr65fy6+woUWPBKYKj8AAIA/AACAP12CZL4lLLU/OaEivxtTvL6ur6G+ST6BvgAAAAAAAAAAptQdPs8lcD9C+yM+F7Ujv32BCz4jE1i9AAAAAAAAAADz7RW+HEJAvB2PFjpAxHw4bcOiPbabWbkAAIA/AACAP6CTOb4ngQQ/J3iUPW3nAr9QWum9FfEBPgAAAAAAAAAAgOAXvRSyo7r6iSs8DfM9PLfy8TrmmCi9AACAPwAAgD8ADBG81Zm1P19Tkr7AJ7g9IVGBO045irwAAAAAAAAAAICeDr32fHS6SsGSPIoltLIlw3a6w6bbMgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKNNocrGucECUhpRSlIwBbJRLqYwBdJRHQLKDUk6tDD11fZQoaAZoCWgPQwidD88S5GtuQJSGlFKUaBVLzmgWR0Cyg1QiNbTudX2UKGgGaAloD0MIe/gyUQSZckCUhpRSlGgVS/9oFkdAsoPnTd+G5HV9lChoBmgJaA9DCHe+nxrvAXJAlIaUUpRoFUvaaBZHQLKD9qjJuEV1fZQoaAZoCWgPQwgl6ZrJt8NxQJSGlFKUaBVL52gWR0Cyg/ks8PnTdX2UKGgGaAloD0MIMqzijYyWckCUhpRSlGgVS+FoFkdAsoQoRL9MsnV9lChoBmgJaA9DCKSpnsw/E3NAlIaUUpRoFUvqaBZHQLKETCI1tO51fZQoaAZoCWgPQwh9sffiCy9wQJSGlFKUaBVLpmgWR0CyhGknb7CSdX2UKGgGaAloD0MImboru2Dob0CUhpRSlGgVS8loFkdAsoSKeHzpYHV9lChoBmgJaA9DCHhBRGra+G5AlIaUUpRoFUuyaBZHQLKErOJtSAJ1fZQoaAZoCWgPQwg/An/4eSFzQJSGlFKUaBVL5WgWR0CyhKU+5e7ddX2UKGgGaAloD0MIQs9m1edgcUCUhpRSlGgVS8JoFkdAsoS5KqXF+HV9lChoBmgJaA9DCHHGMCfoWnJAlIaUUpRoFUvmaBZHQLKEzcqe9SN1fZQoaAZoCWgPQwiuDoC4a75yQJSGlFKUaBVL92gWR0CyhM/I8yN5dX2UKGgGaAloD0MIXhH8b2WZcECUhpRSlGgVS8ZoFkdAsoT5qnFYMnV9lChoBmgJaA9DCK3boPab+HJAlIaUUpRoFUvYaBZHQLKFG1gpjMF1fZQoaAZoCWgPQwhZw0Xu6XNwQJSGlFKUaBVLn2gWR0CyhXjDjzZpdX2UKGgGaAloD0MI7ISX4JRNc0CUhpRSlGgVS8NoFkdAsoWbJ5mh/XV9lChoBmgJaA9DCHNIaqFk13JAlIaUUpRoFUu6aBZHQLKF4hx5s0p1fZQoaAZoCWgPQwipMoy7Ab1yQJSGlFKUaBVL92gWR0Cyhhcz2vjfdX2UKGgGaAloD0MIgT/8/DemcECUhpRSlGgVTQQBaBZHQLKGJlwLmZF1fZQoaAZoCWgPQwhrn47HjKVyQJSGlFKUaBVLvGgWR0Cyhk5L/S6UdX2UKGgGaAloD0MIBaInZZLuckCUhpRSlGgVS9poFkdAsoZxx1gYxnV9lChoBmgJaA9DCAhagSGrRXJAlIaUUpRoFUvuaBZHQLKGfn6Eal11fZQoaAZoCWgPQwjnwkgvKj1xQJSGlFKUaBVLq2gWR0CyhoBh+fAcdX2UKGgGaAloD0MIxk/j3jyfcECUhpRSlGgVS8toFkdAsoaBrvb48HV9lChoBmgJaA9DCL0cdt8x/mBAlIaUUpRoFU3oA2gWR0CyhpihnJ1adX2UKGgGaAloD0MIjj9R2bA5YUCUhpRSlGgVTegDaBZHQLKGsnxri2l1fZQoaAZoCWgPQwh8DixHCBZxQJSGlFKUaBVL1mgWR0CyhqvBrN4adX2UKGgGaAloD0MIx/FDpdFWckCUhpRSlGgVS9hoFkdAsoavZFocrHV9lChoBmgJaA9DCEnajT5mDXNAlIaUUpRoFUv8aBZHQLKGyoduHet1fZQoaAZoCWgPQwg9murJfNFyQJSGlFKUaBVL8WgWR0Cyhx7qD9OzdX2UKGgGaAloD0MI1v85zBe5ckCUhpRSlGgVS8hoFkdAsodBymygPHV9lChoBmgJaA9DCH3p7c/F0nBAlIaUUpRoFUvvaBZHQLKHcDDTBqN1fZQoaAZoCWgPQwhYxRuZRzdxQJSGlFKUaBVLzmgWR0Cyh7wQYk3TdX2UKGgGaAloD0MIW+1hL9TEckCUhpRSlGgVS+5oFkdAsofExpL26HV9lChoBmgJaA9DCMnJxK1CsnFAlIaUUpRoFUvdaBZHQLKHzf6oESx1fZQoaAZoCWgPQwjToGgegNhyQJSGlFKUaBVLwGgWR0Cyh+BuwX67dX2UKGgGaAloD0MIdsWM8LYeckCUhpRSlGgVS9ZoFkdAsofwPCl7+nV9lChoBmgJaA9DCJWcE3sowHFAlIaUUpRoFUuraBZHQLKH60eEIxB1fZQoaAZoCWgPQwhi+IiY0pByQJSGlFKUaBVLxWgWR0Cyh/S7f51vdX2UKGgGaAloD0MID39N1iicckCUhpRSlGgVS7doFkdAsogHuCwr2HV9lChoBmgJaA9DCMAEbt1NK3BAlIaUUpRoFUvDaBZHQLKIA+3H7xd1fZQoaAZoCWgPQwiKq8q+qx9zQJSGlFKUaBVL5WgWR0CyiC1UVBUrdX2UKGgGaAloD0MISkBMwgXscUCUhpRSlGgVS81oFkdAsogtInSfDnV9lChoBmgJaA9DCHGNz2R/x3JAlIaUUpRoFUvpaBZHQLKINQTEit91fZQoaAZoCWgPQwiOWfYkMMZwQJSGlFKUaBVNBAFoFkdAsoitCMPz4HV9lChoBmgJaA9DCNTuVwH+uHBAlIaUUpRoFUvwaBZHQLKI4vKlpGp1fZQoaAZoCWgPQwjuYMQ+wW5xQJSGlFKUaBVNAAFoFkdAsokqXb/OuHV9lChoBmgJaA9DCCAIkKGjVXFAlIaUUpRoFUu6aBZHQLKJLjHn2Zl1fZQoaAZoCWgPQwhdTgmISRV0QJSGlFKUaBVL8WgWR0CyiTz1f3N+dX2UKGgGaAloD0MIVB9I3jn2b0CUhpRSlGgVS7hoFkdAsolMcsDnvHV9lChoBmgJaA9DCOLnvwcvKXBAlIaUUpRoFUuuaBZHQLKJUFQl8gJ1fZQoaAZoCWgPQwjoaiv2F9JwQJSGlFKUaBVL0GgWR0CyiVHDm8ujdX2UKGgGaAloD0MIuf/IdChBcUCUhpRSlGgVS89oFkdAsolzFKkEcXV9lChoBmgJaA9DCIEKR5DKOXJAlIaUUpRoFUvtaBZHQLKJf5paibl1fZQoaAZoCWgPQwg4+S06GcxyQJSGlFKUaBVL4mgWR0CyiYvvF3pwdX2UKGgGaAloD0MIrWwf8tarcECUhpRSlGgVS7VoFkdAsomPTvy9VXV9lChoBmgJaA9DCCxF8pXA8HJAlIaUUpRoFUvJaBZHQLKJqhJiAlR1fZQoaAZoCWgPQwhsXtVZLX1zQJSGlFKUaBVL6GgWR0Cyibuj/MnrdX2UKGgGaAloD0MI2SH+YUuhckCUhpRSlGgVS/toFkdAsonKuMdcS3V9lChoBmgJaA9DCBPWxtgJXXFAlIaUUpRoFUvxaBZHQLKJ8flIVdp1fZQoaAZoCWgPQwj0F3rE6NBvQJSGlFKUaBVLt2gWR0CyijvV3EAHdX2UKGgGaAloD0MI4q/JGnXzckCUhpRSlGgVS8NoFkdAsoqxG+bmVHV9lChoBmgJaA9DCErRyr1Au3NAlIaUUpRoFUvDaBZHQLKKxslsxfx1fZQoaAZoCWgPQwj/7EeKCMBwQJSGlFKUaBVL1mgWR0CyisulbeMydX2UKGgGaAloD0MINxjqsEJ4cUCUhpRSlGgVS8JoFkdAsorGuU2UCHV9lChoBmgJaA9DCMdI9gg1m29AlIaUUpRoFUuyaBZHQLKK2ZU1hst1fZQoaAZoCWgPQwidhNIXwtlwQJSGlFKUaBVL42gWR0CyiuTNMXabdX2UKGgGaAloD0MImYQLeQRmbkCUhpRSlGgVS8RoFkdAsosOPKdQPHV9lChoBmgJaA9DCOrouBrZxHJAlIaUUpRoFUvVaBZHQLKLFYoRZlp1fZQoaAZoCWgPQwgvbw7X6u1yQJSGlFKUaBVLx2gWR0CyixkipvP1dX2UKGgGaAloD0MIhnMNMzQocUCUhpRSlGgVS7loFkdAsosvGwRoRXV9lChoBmgJaA9DCGuduBzv2nBAlIaUUpRoFUvRaBZHQLKLcTnq3Vl1fZQoaAZoCWgPQwh2UInr2ItyQJSGlFKUaBVL0WgWR0Cyi5xWcSXddX2UKGgGaAloD0MI7l9ZaRJacECUhpRSlGgVS7ZoFkdAsou3uZ1FIHV9lChoBmgJaA9DCBprf2c7VXJAlIaUUpRoFUuqaBZHQLKME/wAlv91fZQoaAZoCWgPQwi86CtIs+VuQJSGlFKUaBVLtWgWR0CyjFkkOZssdX2UKGgGaAloD0MIqG3DKAgVdECUhpRSlGgVS8toFkdAsox7jABT43V9lChoBmgJaA9DCDV6NUBpR3FAlIaUUpRoFUvhaBZHQLKMsXt0FKV1fZQoaAZoCWgPQwgDCvX0EdZwQJSGlFKUaBVLzmgWR0CyjNo9s7+2dX2UKGgGaAloD0MIh+EjYgrscUCUhpRSlGgVS9loFkdAsoz8L7XQMXV9lChoBmgJaA9DCME5I0q7aXFAlIaUUpRoFUv5aBZHQLKNDlVtGd91fZQoaAZoCWgPQwjqknGM5NtxQJSGlFKUaBVNBAFoFkdAso0Oh0yP/HV9lChoBmgJaA9DCPyO4bHfEHNAlIaUUpRoFUvdaBZHQLKNHxC6Ymd1fZQoaAZoCWgPQwhYdOs1vXRzQJSGlFKUaBVL7WgWR0CyjR/ZRKpUdX2UKGgGaAloD0MImntI+F75cUCUhpRSlGgVS8xoFkdAso1u8Gs3hnV9lChoBmgJaA9DCPIGmPkOknJAlIaUUpRoFUvxaBZHQLKNk0HQhOh1fZQoaAZoCWgPQwhNvtnmxvFwQJSGlFKUaBVL4WgWR0CyjbozN2TxdX2UKGgGaAloD0MIPujZrHpCb0CUhpRSlGgVS6hoFkdAso34vrWy1XV9lChoBmgJaA9DCP0VMlcG6XJAlIaUUpRoFUvZaBZHQLKOBv+OwPl1fZQoaAZoCWgPQwjHEAAce6NwQJSGlFKUaBVLwWgWR0CyjhDuF6AwdX2UKGgGaAloD0MI1LoNaj+scECUhpRSlGgVS9FoFkdAso6KFj/dZnV9lChoBmgJaA9DCIUJo1nZ5HFAlIaUUpRoFUvYaBZHQLKOxM8ox591fZQoaAZoCWgPQwiqKck6nNVxQJSGlFKUaBVLvWgWR0Cyjscyi22HdX2UKGgGaAloD0MI8ztNZnwidECUhpRSlGgVS81oFkdAso7aa5PM0XV9lChoBmgJaA9DCHpx4qvdC3BAlIaUUpRoFUvNaBZHQLKO6wqRU3p1fZQoaAZoCWgPQwjIW65+rM9yQJSGlFKUaBVL1mgWR0Cyju5yU9pzdX2UKGgGaAloD0MIUcHhBRF/cUCUhpRSlGgVS+RoFkdAso7+W3Sa3XV9lChoBmgJaA9DCJUO1v/5/nFAlIaUUpRoFUvMaBZHQLKPPIatLct1ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 470,
|
79 |
"n_steps": 2048,
|
80 |
"gamma": 0.99,
|
81 |
"gae_lambda": 0.95,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84893
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7804e332980e9dad9654b66452fad6d0aff1a5d7f43f84027e5896b1cfff1a84
|
3 |
size 84893
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea55496fb84e155c89a09a0ec1ed84949c035795b8026a5a13332899ee895f50
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:903b9b899b4f1ddc8679a67ad47c2d664d6cbb91c62e179a3524f5b6c923ca69
|
3 |
+
size 219147
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 270.9703421712439, "std_reward": 13.33506066547877, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T10:50:55.118923"}
|