anamaria1988
commited on
Commit
•
8ddf81c
1
Parent(s):
1c9c2de
First version of Lunar Lander
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 209.65 +/- 76.49
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f78e40b5170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f78e40b5200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f78e40b5290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f78e40b5320>", "_build": "<function ActorCriticPolicy._build at 0x7f78e40b53b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f78e40b5440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f78e40b54d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f78e40b5560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f78e40b55f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f78e40b5680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f78e40b5710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f78e4109240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652002470.6798933, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZdir1IQeW4JxE9u8/5vbYG3UQ7GEheOgAAgD8AAIA/M4dePcT5oT963Yo+FaPuvmZSDj3OhDo9AAAAAAAAAADtR0A+3z5JPgaQ/r1qhGu+CdzOvBrX8rsAAAAAAAAAANoYbj5cTTA92iILvMH8qrr0g84+DcSuuwAAgD8AAIA/7UVBPsV/1Dymg5M5pOFSOOv7ZT7inOC4AACAPwAAgD/AWeO+iMTtPs432T1Uw7a+W6EZvS8ktbsAAAAAAAAAAGDwMj77B+A7gvX5uxKD0LnWKnA9Q5G/ugAAgD8AAIA/Lb9tPsT64j4C0cW9opZsvi//OrxCoA48AAAAAAAAAABAa7M9wiVxP5K3rT1elJi+7okcPTYAzzwAAAAAAAAAAI34HD7PpzG8MMjXPIOeQ7sVC5298QMivAAAgD8AAIA/RVbCvhyEGz3+g6Q7xqBRuEo5+byz9eO6AACAPwAAgD/48cC+XvNDP12sn72yarW+fSkavijzdT0AAAAAAAAAAADHSj5Iuoq8hf3iOkVFE7nSSvu9UTQOugAAgD8AAIA/AEjFvI9uaLrehFs6VQE4NQqXNjoN3nu5AACAPwAAgD9dep0+lPI/Po9Qt73bcUC+OXQ1OwRJOz0AAAAAAAAAAM3Z1b3smv27EDSMug61nTzFCtq7S6KAuwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7kCd8uiWXECUhpRSlIwBbJRN6AOMAXSUR0CR6FZFG5MDdX2UKGgGaAloD0MI48KBkCxTXECUhpRSlGgVTegDaBZHQJHrHMKTjed1fZQoaAZoCWgPQwhwfVhvVEpiQJSGlFKUaBVN6ANoFkdAke0RBAv+O3V9lChoBmgJaA9DCOGYZU8CDF5AlIaUUpRoFU3oA2gWR0CSA6w7DEWJdX2UKGgGaAloD0MI/G1PkNhbV0CUhpRSlGgVTegDaBZHQJIEgxYaHbh1fZQoaAZoCWgPQwj4iQPod11gQJSGlFKUaBVN6ANoFkdAkgZj7VJ+UnV9lChoBmgJaA9DCOvhy0SRF2NAlIaUUpRoFU3oA2gWR0CSB+BreqJedX2UKGgGaAloD0MI4zREFX7cY0CUhpRSlGgVTegDaBZHQJILSdoWYWt1fZQoaAZoCWgPQwjzOXe73mpgQJSGlFKUaBVN6ANoFkdAkgvIwAU+LXV9lChoBmgJaA9DCNl4sMXuwGBAlIaUUpRoFU3oA2gWR0CSDUml67d0dX2UKGgGaAloD0MIkq0upwQPXkCUhpRSlGgVTegDaBZHQJIQsZzgdfd1fZQoaAZoCWgPQwgPYmcKnRlEQJSGlFKUaBVL8mgWR0CSHtKzRhMKdX2UKGgGaAloD0MIvoi2Y+odXUCUhpRSlGgVTegDaBZHQJIksKzAvct1fZQoaAZoCWgPQwgKn62Dg7djQJSGlFKUaBVN6ANoFkdAkimOjIq9XnV9lChoBmgJaA9DCOeJ52wBLmNAlIaUUpRoFU3oA2gWR0CSMj5mRNh3dX2UKGgGaAloD0MII6MDkjC2YECUhpRSlGgVTegDaBZHQJI2HJQtSQ51fZQoaAZoCWgPQwinJVZGIzNgQJSGlFKUaBVN6ANoFkdAkjq4zabnYHV9lChoBmgJaA9DCCgn2lVI6WFAlIaUUpRoFU3oA2gWR0CSPFi5d4VzdX2UKGgGaAloD0MIYyZRL3hqYkCUhpRSlGgVTegDaBZHQJI/S5SWJJp1fZQoaAZoCWgPQwiFeCRenhVkQJSGlFKUaBVN6ANoFkdAkkF71mJ3xHV9lChoBmgJaA9DCJ8hHLPsE2BAlIaUUpRoFU3oA2gWR0CSWe8VHnU2dX2UKGgGaAloD0MIfEj43t/FYECUhpRSlGgVTegDaBZHQJJazQSi/PB1fZQoaAZoCWgPQwhh+8kYH3dgQJSGlFKUaBVN6ANoFkdAklzJMtbs4XV9lChoBmgJaA9DCKtcqPxrkl1AlIaUUpRoFU3oA2gWR0CSXljDsMRZdX2UKGgGaAloD0MIqkavBigDVkCUhpRSlGgVTegDaBZHQJL8DXxvvSd1fZQoaAZoCWgPQwiASL99HchcQJSGlFKUaBVN6ANoFkdAkv4wh4dIXnV9lChoBmgJaA9DCDqy8stgN1xAlIaUUpRoFU3oA2gWR0CTAeYTCcgAdX2UKGgGaAloD0MIqkavBii9HsCUhpRSlGgVS/5oFkdAkwuhpUPxx3V9lChoBmgJaA9DCF0av/DKVmJAlIaUUpRoFU3oA2gWR0CTD/J/5LyudX2UKGgGaAloD0MIY0FhUKYxQMCUhpRSlGgVTRgBaBZHQJMSi31BdD91fZQoaAZoCWgPQwiYw+47hkZaQJSGlFKUaBVN6ANoFkdAkxVVPznRs3V9lChoBmgJaA9DCA/vObAcBmFAlIaUUpRoFU3oA2gWR0CTGaLxI8QqdX2UKGgGaAloD0MIpS+EnPfgYUCUhpRSlGgVTegDaBZHQJMhfQzDXOJ1fZQoaAZoCWgPQwiuKCUEqzdfQJSGlFKUaBVN6ANoFkdAkyUnLA57xHV9lChoBmgJaA9DCH+GN2vwS2FAlIaUUpRoFU3oA2gWR0CTKayU9pyqdX2UKGgGaAloD0MInBa86KuSYkCUhpRSlGgVTegDaBZHQJMrUkleF+N1fZQoaAZoCWgPQwiGVbyR+XVhQJSGlFKUaBVN6ANoFkdAky5hlg+hXnV9lChoBmgJaA9DCEnW4egq8lVAlIaUUpRoFU3oA2gWR0CTMIHSnccmdX2UKGgGaAloD0MIz57L1CRwLkCUhpRSlGgVS9ZoFkdAkz/e6d1+zHV9lChoBmgJaA9DCKERbFx/+2JAlIaUUpRoFU3oA2gWR0CTR4oq0+khdX2UKGgGaAloD0MI/wWCABmWYECUhpRSlGgVTegDaBZHQJNIVEkSmIl1fZQoaAZoCWgPQwgktybdlpNjQJSGlFKUaBVN6ANoFkdAk0txeLNwBHV9lChoBmgJaA9DCINOCB10r2dAlIaUUpRoFU2mAWgWR0CTTv09hZyNdX2UKGgGaAloD0MIi4f3HNjSY0CUhpRSlGgVTegDaBZHQJNQ2ArhBJJ1fZQoaAZoCWgPQwjNV8nHbiVkQJSGlFKUaBVN6ANoFkdAk1Ree8PFvXV9lChoBmgJaA9DCDCgF+5cJWFAlIaUUpRoFU3oA2gWR0CTXg6reZXudX2UKGgGaAloD0MI4Ln3cEkQYECUhpRSlGgVTegDaBZHQJNiGo/A0sR1fZQoaAZoCWgPQwim07oNajFcQJSGlFKUaBVN6ANoFkdAk2Sz7/GVA3V9lChoBmgJaA9DCFKAKJgxx2FAlIaUUpRoFU3oA2gWR0CTZ2AJb+tKdX2UKGgGaAloD0MI0vwxrU2SWkCUhpRSlGgVTegDaBZHQJNrl22XsxB1fZQoaAZoCWgPQwgSFhVxuilhQJSGlFKUaBVN6ANoFkdAk3NCGvfTC3V9lChoBmgJaA9DCMy0/SsrDSNAlIaUUpRoFU0fAWgWR0CTdOOKfnOjdX2UKGgGaAloD0MI/kgRGValM0CUhpRSlGgVS/VoFkdAk3Wop2ECeXV9lChoBmgJaA9DCJhokIIngmFAlIaUUpRoFU3oA2gWR0CTdsR3u/lAdX2UKGgGaAloD0MIGmt/Z3udWECUhpRSlGgVTegDaBZHQJN7DNjbzsh1fZQoaAZoCWgPQwgVkWEVb71dQJSGlFKUaBVN6ANoFkdAk4HfQnhKlHV9lChoBmgJaA9DCEgZcQFofC1AlIaUUpRoFUvpaBZHQJOH4ImgJ1J1fZQoaAZoCWgPQwgyHqUSnr5dQJSGlFKUaBVN6ANoFkdAk5LhwdbPhXV9lChoBmgJaA9DCGVTrvAud2BAlIaUUpRoFU3oA2gWR0CTmuLDQ7cPdX2UKGgGaAloD0MIz0vFxryMRUCUhpRSlGgVTegDaBZHQJObsqc3EQ51fZQoaAZoCWgPQwhAFTduMatBwJSGlFKUaBVL52gWR0CTnek0rK/3dX2UKGgGaAloD0MIoidlUkNdWkCUhpRSlGgVTegDaBZHQJOfAgmqo611fZQoaAZoCWgPQwgsZ++MNv5gQJSGlFKUaBVN6ANoFkdAk6Kn+IdlunV9lChoBmgJaA9DCNVbA1ulTGFAlIaUUpRoFU3oA2gWR0CTpH/XGwRodX2UKGgGaAloD0MIHAqfrQNBYkCUhpRSlGgVTegDaBZHQJRCR8IAwPB1fZQoaAZoCWgPQwixGktYG8tbQJSGlFKUaBVN6ANoFkdAlFKwC8vmHXV9lChoBmgJaA9DCCKMn8Y9KGFAlIaUUpRoFU3oA2gWR0CUVZ2criEQdX2UKGgGaAloD0MImgZF8wBGYkCUhpRSlGgVTegDaBZHQJRaeptJnQJ1fZQoaAZoCWgPQwi6Z12j5fhfQJSGlFKUaBVN6ANoFkdAlGKV6NVBEHV9lChoBmgJaA9DCBgFwePbjF1AlIaUUpRoFU3oA2gWR0CUZQH4GlhxdX2UKGgGaAloD0MIXHLcKZ1cY0CUhpRSlGgVTegDaBZHQJRmBdIGyHF1fZQoaAZoCWgPQwhhw9MrZeBdQJSGlFKUaBVN6ANoFkdAlGnMkD6nBXV9lChoBmgJaA9DCBo09E9wsGFAlIaUUpRoFU3oA2gWR0CUb9ilBQendX2UKGgGaAloD0MI6KT3ja8ZN0CUhpRSlGgVS/hoFkdAlHcH5WRzR3V9lChoBmgJaA9DCLNEZ5lF51xAlIaUUpRoFU3oA2gWR0CUfjfrrxAjdX2UKGgGaAloD0MIclKY9zjTXkCUhpRSlGgVTegDaBZHQJSEwdbPhQ51fZQoaAZoCWgPQwgxYTQr24JdQJSGlFKUaBVN6ANoFkdAlIV8m0E5hnV9lChoBmgJaA9DCKq1MAttCWJAlIaUUpRoFU3oA2gWR0CUh1hakhzOdX2UKGgGaAloD0MI75I4KyIGYkCUhpRSlGgVTegDaBZHQJSIJw97ngZ1fZQoaAZoCWgPQwhtOgK42T9gQJSGlFKUaBVN6ANoFkdAlIsAXhwVCXV9lChoBmgJaA9DCOZciqvKcFtAlIaUUpRoFU3oA2gWR0CUjIQdjoZAdX2UKGgGaAloD0MIWqDdIcUDZECUhpRSlGgVTegDaBZHQJSPUYR/ViF1fZQoaAZoCWgPQwjQJRx6C4xgQJSGlFKUaBVN6ANoFkdAlJ2/Cl7+k3V9lChoBmgJaA9DCGpsrwU9WGJAlIaUUpRoFU3oA2gWR0CUoH89Oh0ydX2UKGgGaAloD0MI6wJeZtj8YUCUhpRSlGgVTegDaBZHQJSk0cvM8ox1fZQoaAZoCWgPQwgVOxqH+k1iQJSGlFKUaBVN6ANoFkdAlKxh2nsLOXV9lChoBmgJaA9DCD547dKGZ15AlIaUUpRoFU3oA2gWR0CUsA0lZ5iWdX2UKGgGaAloD0MIldQJaKLmZkCUhpRSlGgVTegDaBZHQJS0V4NZvDR1fZQoaAZoCWgPQwgviEhNuzgRQJSGlFKUaBVL+GgWR0CUuMFKkEcLdX2UKGgGaAloD0MITRO2n4znYUCUhpRSlGgVTegDaBZHQJS698twrDt1fZQoaAZoCWgPQwiJl6dzReptQJSGlFKUaBVNZgFoFkdAlLzig9Net3V9lChoBmgJaA9DCOWZl8PubmNAlIaUUpRoFU3oA2gWR0CUwcbPyCnQdX2UKGgGaAloD0MIKnKIuDloY0CUhpRSlGgVTegDaBZHQJTIG3UhFE11fZQoaAZoCWgPQwgzpmCNs/FgQJSGlFKUaBVN6ANoFkdAlM4jGLk0anV9lChoBmgJaA9DCKtALQaPE2BAlIaUUpRoFU3oA2gWR0CUztO9FnZkdX2UKGgGaAloD0MIu0bLgR5UY0CUhpRSlGgVTegDaBZHQJTQhp0wJw91fZQoaAZoCWgPQwgnol9bP8tbQJSGlFKUaBVN6ANoFkdAlNFUOqebu3V9lChoBmgJaA9DCMVU+glnyV1AlIaUUpRoFU3oA2gWR0CU0/zZHuqndX2UKGgGaAloD0MIl3DoLR4xX0CUhpRSlGgVTegDaBZHQJTVclC1JDp1fZQoaAZoCWgPQwhYchWLX6thQJSGlFKUaBVN6ANoFkdAlNhfGyX2NHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6cedfbfef656502b47f5450caf58268b3a7061cdbcaae5d27019e7df72bda607
|
3 |
+
size 144102
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f78e40b5170>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f78e40b5200>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f78e40b5290>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f78e40b5320>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f78e40b53b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f78e40b5440>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f78e40b54d0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f78e40b5560>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f78e40b55f0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f78e40b5680>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f78e40b5710>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f78e4109240>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652002470.6798933,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZdir1IQeW4JxE9u8/5vbYG3UQ7GEheOgAAgD8AAIA/M4dePcT5oT963Yo+FaPuvmZSDj3OhDo9AAAAAAAAAADtR0A+3z5JPgaQ/r1qhGu+CdzOvBrX8rsAAAAAAAAAANoYbj5cTTA92iILvMH8qrr0g84+DcSuuwAAgD8AAIA/7UVBPsV/1Dymg5M5pOFSOOv7ZT7inOC4AACAPwAAgD/AWeO+iMTtPs432T1Uw7a+W6EZvS8ktbsAAAAAAAAAAGDwMj77B+A7gvX5uxKD0LnWKnA9Q5G/ugAAgD8AAIA/Lb9tPsT64j4C0cW9opZsvi//OrxCoA48AAAAAAAAAABAa7M9wiVxP5K3rT1elJi+7okcPTYAzzwAAAAAAAAAAI34HD7PpzG8MMjXPIOeQ7sVC5298QMivAAAgD8AAIA/RVbCvhyEGz3+g6Q7xqBRuEo5+byz9eO6AACAPwAAgD/48cC+XvNDP12sn72yarW+fSkavijzdT0AAAAAAAAAAADHSj5Iuoq8hf3iOkVFE7nSSvu9UTQOugAAgD8AAIA/AEjFvI9uaLrehFs6VQE4NQqXNjoN3nu5AACAPwAAgD9dep0+lPI/Po9Qt73bcUC+OXQ1OwRJOz0AAAAAAAAAAM3Z1b3smv27EDSMug61nTzFCtq7S6KAuwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7kCd8uiWXECUhpRSlIwBbJRN6AOMAXSUR0CR6FZFG5MDdX2UKGgGaAloD0MI48KBkCxTXECUhpRSlGgVTegDaBZHQJHrHMKTjed1fZQoaAZoCWgPQwhwfVhvVEpiQJSGlFKUaBVN6ANoFkdAke0RBAv+O3V9lChoBmgJaA9DCOGYZU8CDF5AlIaUUpRoFU3oA2gWR0CSA6w7DEWJdX2UKGgGaAloD0MI/G1PkNhbV0CUhpRSlGgVTegDaBZHQJIEgxYaHbh1fZQoaAZoCWgPQwj4iQPod11gQJSGlFKUaBVN6ANoFkdAkgZj7VJ+UnV9lChoBmgJaA9DCOvhy0SRF2NAlIaUUpRoFU3oA2gWR0CSB+BreqJedX2UKGgGaAloD0MI4zREFX7cY0CUhpRSlGgVTegDaBZHQJILSdoWYWt1fZQoaAZoCWgPQwjzOXe73mpgQJSGlFKUaBVN6ANoFkdAkgvIwAU+LXV9lChoBmgJaA9DCNl4sMXuwGBAlIaUUpRoFU3oA2gWR0CSDUml67d0dX2UKGgGaAloD0MIkq0upwQPXkCUhpRSlGgVTegDaBZHQJIQsZzgdfd1fZQoaAZoCWgPQwgPYmcKnRlEQJSGlFKUaBVL8mgWR0CSHtKzRhMKdX2UKGgGaAloD0MIvoi2Y+odXUCUhpRSlGgVTegDaBZHQJIksKzAvct1fZQoaAZoCWgPQwgKn62Dg7djQJSGlFKUaBVN6ANoFkdAkimOjIq9XnV9lChoBmgJaA9DCOeJ52wBLmNAlIaUUpRoFU3oA2gWR0CSMj5mRNh3dX2UKGgGaAloD0MII6MDkjC2YECUhpRSlGgVTegDaBZHQJI2HJQtSQ51fZQoaAZoCWgPQwinJVZGIzNgQJSGlFKUaBVN6ANoFkdAkjq4zabnYHV9lChoBmgJaA9DCCgn2lVI6WFAlIaUUpRoFU3oA2gWR0CSPFi5d4VzdX2UKGgGaAloD0MIYyZRL3hqYkCUhpRSlGgVTegDaBZHQJI/S5SWJJp1fZQoaAZoCWgPQwiFeCRenhVkQJSGlFKUaBVN6ANoFkdAkkF71mJ3xHV9lChoBmgJaA9DCJ8hHLPsE2BAlIaUUpRoFU3oA2gWR0CSWe8VHnU2dX2UKGgGaAloD0MIfEj43t/FYECUhpRSlGgVTegDaBZHQJJazQSi/PB1fZQoaAZoCWgPQwhh+8kYH3dgQJSGlFKUaBVN6ANoFkdAklzJMtbs4XV9lChoBmgJaA9DCKtcqPxrkl1AlIaUUpRoFU3oA2gWR0CSXljDsMRZdX2UKGgGaAloD0MIqkavBigDVkCUhpRSlGgVTegDaBZHQJL8DXxvvSd1fZQoaAZoCWgPQwiASL99HchcQJSGlFKUaBVN6ANoFkdAkv4wh4dIXnV9lChoBmgJaA9DCDqy8stgN1xAlIaUUpRoFU3oA2gWR0CTAeYTCcgAdX2UKGgGaAloD0MIqkavBii9HsCUhpRSlGgVS/5oFkdAkwuhpUPxx3V9lChoBmgJaA9DCF0av/DKVmJAlIaUUpRoFU3oA2gWR0CTD/J/5LyudX2UKGgGaAloD0MIY0FhUKYxQMCUhpRSlGgVTRgBaBZHQJMSi31BdD91fZQoaAZoCWgPQwiYw+47hkZaQJSGlFKUaBVN6ANoFkdAkxVVPznRs3V9lChoBmgJaA9DCA/vObAcBmFAlIaUUpRoFU3oA2gWR0CTGaLxI8QqdX2UKGgGaAloD0MIpS+EnPfgYUCUhpRSlGgVTegDaBZHQJMhfQzDXOJ1fZQoaAZoCWgPQwiuKCUEqzdfQJSGlFKUaBVN6ANoFkdAkyUnLA57xHV9lChoBmgJaA9DCH+GN2vwS2FAlIaUUpRoFU3oA2gWR0CTKayU9pyqdX2UKGgGaAloD0MInBa86KuSYkCUhpRSlGgVTegDaBZHQJMrUkleF+N1fZQoaAZoCWgPQwiGVbyR+XVhQJSGlFKUaBVN6ANoFkdAky5hlg+hXnV9lChoBmgJaA9DCEnW4egq8lVAlIaUUpRoFU3oA2gWR0CTMIHSnccmdX2UKGgGaAloD0MIz57L1CRwLkCUhpRSlGgVS9ZoFkdAkz/e6d1+zHV9lChoBmgJaA9DCKERbFx/+2JAlIaUUpRoFU3oA2gWR0CTR4oq0+khdX2UKGgGaAloD0MI/wWCABmWYECUhpRSlGgVTegDaBZHQJNIVEkSmIl1fZQoaAZoCWgPQwgktybdlpNjQJSGlFKUaBVN6ANoFkdAk0txeLNwBHV9lChoBmgJaA9DCINOCB10r2dAlIaUUpRoFU2mAWgWR0CTTv09hZyNdX2UKGgGaAloD0MIi4f3HNjSY0CUhpRSlGgVTegDaBZHQJNQ2ArhBJJ1fZQoaAZoCWgPQwjNV8nHbiVkQJSGlFKUaBVN6ANoFkdAk1Ree8PFvXV9lChoBmgJaA9DCDCgF+5cJWFAlIaUUpRoFU3oA2gWR0CTXg6reZXudX2UKGgGaAloD0MI4Ln3cEkQYECUhpRSlGgVTegDaBZHQJNiGo/A0sR1fZQoaAZoCWgPQwim07oNajFcQJSGlFKUaBVN6ANoFkdAk2Sz7/GVA3V9lChoBmgJaA9DCFKAKJgxx2FAlIaUUpRoFU3oA2gWR0CTZ2AJb+tKdX2UKGgGaAloD0MI0vwxrU2SWkCUhpRSlGgVTegDaBZHQJNrl22XsxB1fZQoaAZoCWgPQwgSFhVxuilhQJSGlFKUaBVN6ANoFkdAk3NCGvfTC3V9lChoBmgJaA9DCMy0/SsrDSNAlIaUUpRoFU0fAWgWR0CTdOOKfnOjdX2UKGgGaAloD0MI/kgRGValM0CUhpRSlGgVS/VoFkdAk3Wop2ECeXV9lChoBmgJaA9DCJhokIIngmFAlIaUUpRoFU3oA2gWR0CTdsR3u/lAdX2UKGgGaAloD0MIGmt/Z3udWECUhpRSlGgVTegDaBZHQJN7DNjbzsh1fZQoaAZoCWgPQwgVkWEVb71dQJSGlFKUaBVN6ANoFkdAk4HfQnhKlHV9lChoBmgJaA9DCEgZcQFofC1AlIaUUpRoFUvpaBZHQJOH4ImgJ1J1fZQoaAZoCWgPQwgyHqUSnr5dQJSGlFKUaBVN6ANoFkdAk5LhwdbPhXV9lChoBmgJaA9DCGVTrvAud2BAlIaUUpRoFU3oA2gWR0CTmuLDQ7cPdX2UKGgGaAloD0MIz0vFxryMRUCUhpRSlGgVTegDaBZHQJObsqc3EQ51fZQoaAZoCWgPQwhAFTduMatBwJSGlFKUaBVL52gWR0CTnek0rK/3dX2UKGgGaAloD0MIoidlUkNdWkCUhpRSlGgVTegDaBZHQJOfAgmqo611fZQoaAZoCWgPQwgsZ++MNv5gQJSGlFKUaBVN6ANoFkdAk6Kn+IdlunV9lChoBmgJaA9DCNVbA1ulTGFAlIaUUpRoFU3oA2gWR0CTpH/XGwRodX2UKGgGaAloD0MIHAqfrQNBYkCUhpRSlGgVTegDaBZHQJRCR8IAwPB1fZQoaAZoCWgPQwixGktYG8tbQJSGlFKUaBVN6ANoFkdAlFKwC8vmHXV9lChoBmgJaA9DCCKMn8Y9KGFAlIaUUpRoFU3oA2gWR0CUVZ2criEQdX2UKGgGaAloD0MImgZF8wBGYkCUhpRSlGgVTegDaBZHQJRaeptJnQJ1fZQoaAZoCWgPQwi6Z12j5fhfQJSGlFKUaBVN6ANoFkdAlGKV6NVBEHV9lChoBmgJaA9DCBgFwePbjF1AlIaUUpRoFU3oA2gWR0CUZQH4GlhxdX2UKGgGaAloD0MIXHLcKZ1cY0CUhpRSlGgVTegDaBZHQJRmBdIGyHF1fZQoaAZoCWgPQwhhw9MrZeBdQJSGlFKUaBVN6ANoFkdAlGnMkD6nBXV9lChoBmgJaA9DCBo09E9wsGFAlIaUUpRoFU3oA2gWR0CUb9ilBQendX2UKGgGaAloD0MI6KT3ja8ZN0CUhpRSlGgVS/hoFkdAlHcH5WRzR3V9lChoBmgJaA9DCLNEZ5lF51xAlIaUUpRoFU3oA2gWR0CUfjfrrxAjdX2UKGgGaAloD0MIclKY9zjTXkCUhpRSlGgVTegDaBZHQJSEwdbPhQ51fZQoaAZoCWgPQwgxYTQr24JdQJSGlFKUaBVN6ANoFkdAlIV8m0E5hnV9lChoBmgJaA9DCKq1MAttCWJAlIaUUpRoFU3oA2gWR0CUh1hakhzOdX2UKGgGaAloD0MI75I4KyIGYkCUhpRSlGgVTegDaBZHQJSIJw97ngZ1fZQoaAZoCWgPQwhtOgK42T9gQJSGlFKUaBVN6ANoFkdAlIsAXhwVCXV9lChoBmgJaA9DCOZciqvKcFtAlIaUUpRoFU3oA2gWR0CUjIQdjoZAdX2UKGgGaAloD0MIWqDdIcUDZECUhpRSlGgVTegDaBZHQJSPUYR/ViF1fZQoaAZoCWgPQwjQJRx6C4xgQJSGlFKUaBVN6ANoFkdAlJ2/Cl7+k3V9lChoBmgJaA9DCGpsrwU9WGJAlIaUUpRoFU3oA2gWR0CUoH89Oh0ydX2UKGgGaAloD0MI6wJeZtj8YUCUhpRSlGgVTegDaBZHQJSk0cvM8ox1fZQoaAZoCWgPQwgVOxqH+k1iQJSGlFKUaBVN6ANoFkdAlKxh2nsLOXV9lChoBmgJaA9DCD547dKGZ15AlIaUUpRoFU3oA2gWR0CUsA0lZ5iWdX2UKGgGaAloD0MIldQJaKLmZkCUhpRSlGgVTegDaBZHQJS0V4NZvDR1fZQoaAZoCWgPQwgviEhNuzgRQJSGlFKUaBVL+GgWR0CUuMFKkEcLdX2UKGgGaAloD0MITRO2n4znYUCUhpRSlGgVTegDaBZHQJS698twrDt1fZQoaAZoCWgPQwiJl6dzReptQJSGlFKUaBVNZgFoFkdAlLzig9Net3V9lChoBmgJaA9DCOWZl8PubmNAlIaUUpRoFU3oA2gWR0CUwcbPyCnQdX2UKGgGaAloD0MIKnKIuDloY0CUhpRSlGgVTegDaBZHQJTIG3UhFE11fZQoaAZoCWgPQwgzpmCNs/FgQJSGlFKUaBVN6ANoFkdAlM4jGLk0anV9lChoBmgJaA9DCKtALQaPE2BAlIaUUpRoFU3oA2gWR0CUztO9FnZkdX2UKGgGaAloD0MIu0bLgR5UY0CUhpRSlGgVTegDaBZHQJTQhp0wJw91fZQoaAZoCWgPQwgnol9bP8tbQJSGlFKUaBVN6ANoFkdAlNFUOqebu3V9lChoBmgJaA9DCMVU+glnyV1AlIaUUpRoFU3oA2gWR0CU0/zZHuqndX2UKGgGaAloD0MIl3DoLR4xX0CUhpRSlGgVTegDaBZHQJTVclC1JDp1fZQoaAZoCWgPQwhYchWLX6thQJSGlFKUaBVN6ANoFkdAlNhfGyX2NHVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 160,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93a0fa3190b40d8ddfc31ac9f4ca3af1fd38542b4a8422ff7629d888059a4ef9
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:820cd5b85c3375121a5544dbb38b8c51316762059a5d66f2dd9f50e9afb2c573
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9194370cb1cf262d1376cee3639a93e72b7ff009216ef12033bbbb82003d9781
|
3 |
+
size 248881
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 209.6535544663273, "std_reward": 76.48659834826972, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T10:16:14.244247"}
|