--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-emotion-classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.4375 --- # vit-base-patch16-224-in21k-emotion-classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6098 - Accuracy: 0.4375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 101010 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 2.0782 | 0.1938 | | No log | 2.0 | 40 | 2.0771 | 0.1938 | | No log | 3.0 | 60 | 2.0752 | 0.1875 | | No log | 4.0 | 80 | 2.0725 | 0.1875 | | No log | 5.0 | 100 | 2.0691 | 0.1812 | | No log | 6.0 | 120 | 2.0646 | 0.1875 | | No log | 7.0 | 140 | 2.0591 | 0.1875 | | No log | 8.0 | 160 | 2.0517 | 0.2062 | | No log | 9.0 | 180 | 2.0423 | 0.2062 | | No log | 10.0 | 200 | 2.0301 | 0.2437 | | No log | 11.0 | 220 | 2.0148 | 0.275 | | No log | 12.0 | 240 | 1.9941 | 0.2687 | | No log | 13.0 | 260 | 1.9721 | 0.325 | | No log | 14.0 | 280 | 1.9464 | 0.3375 | | No log | 15.0 | 300 | 1.9138 | 0.3312 | | No log | 16.0 | 320 | 1.8832 | 0.3438 | | No log | 17.0 | 340 | 1.8495 | 0.3625 | | No log | 18.0 | 360 | 1.8153 | 0.3688 | | No log | 19.0 | 380 | 1.7807 | 0.3625 | | No log | 20.0 | 400 | 1.7487 | 0.3812 | | No log | 21.0 | 420 | 1.7179 | 0.3875 | | No log | 22.0 | 440 | 1.6897 | 0.4125 | | No log | 23.0 | 460 | 1.6649 | 0.4062 | | No log | 24.0 | 480 | 1.6409 | 0.3937 | | 1.7227 | 25.0 | 500 | 1.6235 | 0.4188 | | 1.7227 | 26.0 | 520 | 1.5990 | 0.4 | | 1.7227 | 27.0 | 540 | 1.5816 | 0.425 | | 1.7227 | 28.0 | 560 | 1.5664 | 0.45 | | 1.7227 | 29.0 | 580 | 1.5497 | 0.4313 | | 1.7227 | 30.0 | 600 | 1.5323 | 0.4125 | | 1.7227 | 31.0 | 620 | 1.5209 | 0.425 | | 1.7227 | 32.0 | 640 | 1.5059 | 0.4 | | 1.7227 | 33.0 | 660 | 1.5029 | 0.4188 | | 1.7227 | 34.0 | 680 | 1.4970 | 0.4313 | | 1.7227 | 35.0 | 700 | 1.4944 | 0.4062 | | 1.7227 | 36.0 | 720 | 1.4992 | 0.425 | | 1.7227 | 37.0 | 740 | 1.5060 | 0.425 | | 1.7227 | 38.0 | 760 | 1.4960 | 0.4313 | | 1.7227 | 39.0 | 780 | 1.5080 | 0.4313 | | 1.7227 | 40.0 | 800 | 1.5175 | 0.425 | | 1.7227 | 41.0 | 820 | 1.5219 | 0.4188 | | 1.7227 | 42.0 | 840 | 1.5273 | 0.4313 | | 1.7227 | 43.0 | 860 | 1.5318 | 0.425 | | 1.7227 | 44.0 | 880 | 1.5446 | 0.4313 | | 1.7227 | 45.0 | 900 | 1.5519 | 0.4375 | | 1.7227 | 46.0 | 920 | 1.5678 | 0.4188 | | 1.7227 | 47.0 | 940 | 1.5747 | 0.4375 | | 1.7227 | 48.0 | 960 | 1.5843 | 0.4375 | | 1.7227 | 49.0 | 980 | 1.5968 | 0.425 | | 0.3221 | 50.0 | 1000 | 1.6098 | 0.4375 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1