File size: 8,704 Bytes
823807d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
from common.quaternion import *
import scipy.ndimage.filters as filters
class Skeleton(object):
def __init__(self, offset, kinematic_tree, device):
self.device = device
self._raw_offset_np = offset.numpy()
self._raw_offset = offset.clone().detach().to(device).float()
self._kinematic_tree = kinematic_tree
self._offset = None
self._parents = [0] * len(self._raw_offset)
self._parents[0] = -1
for chain in self._kinematic_tree:
for j in range(1, len(chain)):
self._parents[chain[j]] = chain[j-1]
def njoints(self):
return len(self._raw_offset)
def offset(self):
return self._offset
def set_offset(self, offsets):
self._offset = offsets.clone().detach().to(self.device).float()
def kinematic_tree(self):
return self._kinematic_tree
def parents(self):
return self._parents
# joints (batch_size, joints_num, 3)
def get_offsets_joints_batch(self, joints):
assert len(joints.shape) == 3
_offsets = self._raw_offset.expand(joints.shape[0], -1, -1).clone()
for i in range(1, self._raw_offset.shape[0]):
_offsets[:, i] = torch.norm(joints[:, i] - joints[:, self._parents[i]], p=2, dim=1)[:, None] * _offsets[:, i]
self._offset = _offsets.detach()
return _offsets
# joints (joints_num, 3)
def get_offsets_joints(self, joints):
assert len(joints.shape) == 2
_offsets = self._raw_offset.clone()
for i in range(1, self._raw_offset.shape[0]):
# print(joints.shape)
_offsets[i] = torch.norm(joints[i] - joints[self._parents[i]], p=2, dim=0) * _offsets[i]
self._offset = _offsets.detach()
return _offsets
# face_joint_idx should follow the order of right hip, left hip, right shoulder, left shoulder
# joints (batch_size, joints_num, 3)
def inverse_kinematics_np(self, joints, face_joint_idx, smooth_forward=False):
assert len(face_joint_idx) == 4
'''Get Forward Direction'''
l_hip, r_hip, sdr_r, sdr_l = face_joint_idx
across1 = joints[:, r_hip] - joints[:, l_hip]
across2 = joints[:, sdr_r] - joints[:, sdr_l]
across = across1 + across2
across = across / np.sqrt((across**2).sum(axis=-1))[:, np.newaxis]
# print(across1.shape, across2.shape)
# forward (batch_size, 3)
forward = np.cross(np.array([[0, 1, 0]]), across, axis=-1)
if smooth_forward:
forward = filters.gaussian_filter1d(forward, 20, axis=0, mode='nearest')
# forward (batch_size, 3)
forward = forward / np.sqrt((forward**2).sum(axis=-1))[..., np.newaxis]
'''Get Root Rotation'''
target = np.array([[0,0,1]]).repeat(len(forward), axis=0)
root_quat = qbetween_np(forward, target)
'''Inverse Kinematics'''
# quat_params (batch_size, joints_num, 4)
# print(joints.shape[:-1])
quat_params = np.zeros(joints.shape[:-1] + (4,))
# print(quat_params.shape)
root_quat[0] = np.array([[1.0, 0.0, 0.0, 0.0]])
quat_params[:, 0] = root_quat
# quat_params[0, 0] = np.array([[1.0, 0.0, 0.0, 0.0]])
for chain in self._kinematic_tree:
R = root_quat
for j in range(len(chain) - 1):
# (batch, 3)
u = self._raw_offset_np[chain[j+1]][np.newaxis,...].repeat(len(joints), axis=0)
# print(u.shape)
# (batch, 3)
v = joints[:, chain[j+1]] - joints[:, chain[j]]
v = v / np.sqrt((v**2).sum(axis=-1))[:, np.newaxis]
# print(u.shape, v.shape)
rot_u_v = qbetween_np(u, v)
R_loc = qmul_np(qinv_np(R), rot_u_v)
quat_params[:,chain[j + 1], :] = R_loc
R = qmul_np(R, R_loc)
return quat_params
# Be sure root joint is at the beginning of kinematic chains
def forward_kinematics(self, quat_params, root_pos, skel_joints=None, do_root_R=True):
# quat_params (batch_size, joints_num, 4)
# joints (batch_size, joints_num, 3)
# root_pos (batch_size, 3)
if skel_joints is not None:
offsets = self.get_offsets_joints_batch(skel_joints)
if len(self._offset.shape) == 2:
offsets = self._offset.expand(quat_params.shape[0], -1, -1)
joints = torch.zeros(quat_params.shape[:-1] + (3,)).to(self.device)
joints[:, 0] = root_pos
for chain in self._kinematic_tree:
if do_root_R:
R = quat_params[:, 0]
else:
R = torch.tensor([[1.0, 0.0, 0.0, 0.0]]).expand(len(quat_params), -1).detach().to(self.device)
for i in range(1, len(chain)):
R = qmul(R, quat_params[:, chain[i]])
offset_vec = offsets[:, chain[i]]
joints[:, chain[i]] = qrot(R, offset_vec) + joints[:, chain[i-1]]
return joints
# Be sure root joint is at the beginning of kinematic chains
def forward_kinematics_np(self, quat_params, root_pos, skel_joints=None, do_root_R=True):
# quat_params (batch_size, joints_num, 4)
# joints (batch_size, joints_num, 3)
# root_pos (batch_size, 3)
if skel_joints is not None:
skel_joints = torch.from_numpy(skel_joints)
offsets = self.get_offsets_joints_batch(skel_joints)
if len(self._offset.shape) == 2:
offsets = self._offset.expand(quat_params.shape[0], -1, -1)
offsets = offsets.numpy()
joints = np.zeros(quat_params.shape[:-1] + (3,))
joints[:, 0] = root_pos
for chain in self._kinematic_tree:
if do_root_R:
R = quat_params[:, 0]
else:
R = np.array([[1.0, 0.0, 0.0, 0.0]]).repeat(len(quat_params), axis=0)
for i in range(1, len(chain)):
R = qmul_np(R, quat_params[:, chain[i]])
offset_vec = offsets[:, chain[i]]
joints[:, chain[i]] = qrot_np(R, offset_vec) + joints[:, chain[i - 1]]
return joints
def forward_kinematics_cont6d_np(self, cont6d_params, root_pos, skel_joints=None, do_root_R=True):
# cont6d_params (batch_size, joints_num, 6)
# joints (batch_size, joints_num, 3)
# root_pos (batch_size, 3)
if skel_joints is not None:
skel_joints = torch.from_numpy(skel_joints)
offsets = self.get_offsets_joints_batch(skel_joints)
if len(self._offset.shape) == 2:
offsets = self._offset.expand(cont6d_params.shape[0], -1, -1)
offsets = offsets.numpy()
joints = np.zeros(cont6d_params.shape[:-1] + (3,))
joints[:, 0] = root_pos
for chain in self._kinematic_tree:
if do_root_R:
matR = cont6d_to_matrix_np(cont6d_params[:, 0])
else:
matR = np.eye(3)[np.newaxis, :].repeat(len(cont6d_params), axis=0)
for i in range(1, len(chain)):
matR = np.matmul(matR, cont6d_to_matrix_np(cont6d_params[:, chain[i]]))
offset_vec = offsets[:, chain[i]][..., np.newaxis]
# print(matR.shape, offset_vec.shape)
joints[:, chain[i]] = np.matmul(matR, offset_vec).squeeze(-1) + joints[:, chain[i-1]]
return joints
def forward_kinematics_cont6d(self, cont6d_params, root_pos, skel_joints=None, do_root_R=True):
# cont6d_params (batch_size, joints_num, 6)
# joints (batch_size, joints_num, 3)
# root_pos (batch_size, 3)
if skel_joints is not None:
# skel_joints = torch.from_numpy(skel_joints)
offsets = self.get_offsets_joints_batch(skel_joints)
if len(self._offset.shape) == 2:
offsets = self._offset.expand(cont6d_params.shape[0], -1, -1)
joints = torch.zeros(cont6d_params.shape[:-1] + (3,)).to(cont6d_params.device)
joints[..., 0, :] = root_pos
for chain in self._kinematic_tree:
if do_root_R:
matR = cont6d_to_matrix(cont6d_params[:, 0])
else:
matR = torch.eye(3).expand((len(cont6d_params), -1, -1)).detach().to(cont6d_params.device)
for i in range(1, len(chain)):
matR = torch.matmul(matR, cont6d_to_matrix(cont6d_params[:, chain[i]]))
offset_vec = offsets[:, chain[i]].unsqueeze(-1)
# print(matR.shape, offset_vec.shape)
joints[:, chain[i]] = torch.matmul(matR, offset_vec).squeeze(-1) + joints[:, chain[i-1]]
return joints
|