File size: 5,635 Bytes
823807d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import numpy as np
# import cv2
from PIL import Image
from utils import paramUtil
import math
import time
import matplotlib.pyplot as plt
# from scipy.ndimage import gaussian_filter


def mkdir(path):
    if not os.path.exists(path):
        os.makedirs(path)

COLORS = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0],
          [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
          [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]

MISSING_VALUE = -1

def save_image(image_numpy, image_path):
    img_pil = Image.fromarray(image_numpy)
    img_pil.save(image_path)


def save_logfile(log_loss, save_path):
    with open(save_path, 'wt') as f:
        for k, v in log_loss.items():
            w_line = k
            for digit in v:
                w_line += ' %.3f' % digit
            f.write(w_line + '\n')


def print_current_loss(start_time, niter_state, total_niters, losses, epoch=None, sub_epoch=None,
                       inner_iter=None, tf_ratio=None, sl_steps=None):

    def as_minutes(s):
        m = math.floor(s / 60)
        s -= m * 60
        return '%dm %ds' % (m, s)

    def time_since(since, percent):
        now = time.time()
        s = now - since
        es = s / percent
        rs = es - s
        return '%s (- %s)' % (as_minutes(s), as_minutes(rs))

    if epoch is not None:
        print('ep/it:%2d-%4d niter:%6d' % (epoch, inner_iter, niter_state), end=" ")

    message = ' %s completed:%3d%%)' % (time_since(start_time, niter_state / total_niters), niter_state / total_niters * 100)
    # now = time.time()
    # message += '%s'%(as_minutes(now - start_time))


    for k, v in losses.items():
        message += ' %s: %.4f ' % (k, v)
    # message += ' sl_length:%2d tf_ratio:%.2f'%(sl_steps, tf_ratio)
    print(message)

def print_current_loss_decomp(start_time, niter_state, total_niters, losses, epoch=None, inner_iter=None):

    def as_minutes(s):
        m = math.floor(s / 60)
        s -= m * 60
        return '%dm %ds' % (m, s)

    def time_since(since, percent):
        now = time.time()
        s = now - since
        es = s / percent
        rs = es - s
        return '%s (- %s)' % (as_minutes(s), as_minutes(rs))

    print('epoch: %03d inner_iter: %5d' % (epoch, inner_iter), end=" ")
    # now = time.time()
    message = '%s niter: %07d completed: %3d%%)'%(time_since(start_time, niter_state / total_niters), niter_state, niter_state / total_niters * 100)
    for k, v in losses.items():
        message += ' %s: %.4f ' % (k, v)
    print(message)


def compose_gif_img_list(img_list, fp_out, duration):
    img, *imgs = [Image.fromarray(np.array(image)) for image in img_list]
    img.save(fp=fp_out, format='GIF', append_images=imgs, optimize=False,
             save_all=True, loop=0, duration=duration)


def save_images(visuals, image_path):
    if not os.path.exists(image_path):
        os.makedirs(image_path)

    for i, (label, img_numpy) in enumerate(visuals.items()):
        img_name = '%d_%s.jpg' % (i, label)
        save_path = os.path.join(image_path, img_name)
        save_image(img_numpy, save_path)


def save_images_test(visuals, image_path, from_name, to_name):
    if not os.path.exists(image_path):
        os.makedirs(image_path)

    for i, (label, img_numpy) in enumerate(visuals.items()):
        img_name = "%s_%s_%s" % (from_name, to_name, label)
        save_path = os.path.join(image_path, img_name)
        save_image(img_numpy, save_path)


def compose_and_save_img(img_list, save_dir, img_name, col=4, row=1, img_size=(256, 200)):
    # print(col, row)
    compose_img = compose_image(img_list, col, row, img_size)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    img_path = os.path.join(save_dir, img_name)
    # print(img_path)
    compose_img.save(img_path)


def compose_image(img_list, col, row, img_size):
    to_image = Image.new('RGB', (col * img_size[0], row * img_size[1]))
    for y in range(0, row):
        for x in range(0, col):
            from_img = Image.fromarray(img_list[y * col + x])
            # print((x * img_size[0], y*img_size[1],
            #                           (x + 1) * img_size[0], (y + 1) * img_size[1]))
            paste_area = (x * img_size[0], y*img_size[1],
                                      (x + 1) * img_size[0], (y + 1) * img_size[1])
            to_image.paste(from_img, paste_area)
            # to_image[y*img_size[1]:(y + 1) * img_size[1], x * img_size[0] :(x + 1) * img_size[0]] = from_img
    return to_image


def plot_loss_curve(losses, save_path, intervals=500):
    plt.figure(figsize=(10, 5))
    plt.title("Loss During Training")
    for key in losses.keys():
        plt.plot(list_cut_average(losses[key], intervals), label=key)
    plt.xlabel("Iterations/" + str(intervals))
    plt.ylabel("Loss")
    plt.legend()
    plt.savefig(save_path)
    plt.show()


def list_cut_average(ll, intervals):
    if intervals == 1:
        return ll

    bins = math.ceil(len(ll) * 1.0 / intervals)
    ll_new = []
    for i in range(bins):
        l_low = intervals * i
        l_high = l_low + intervals
        l_high = l_high if l_high < len(ll) else len(ll)
        ll_new.append(np.mean(ll[l_low:l_high]))
    return ll_new


# def motion_temporal_filter(motion, sigma=1):
#     motion = motion.reshape(motion.shape[0], -1)
#     # print(motion.shape)
#     for i in range(motion.shape[1]):
#         motion[:, i] = gaussian_filter(motion[:, i], sigma=sigma, mode="nearest")
#     return motion.reshape(motion.shape[0], -1, 3)