File size: 14,603 Bytes
823807d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
from os.path import join as pjoin
import torch
from torch.utils import data
import numpy as np
from tqdm import tqdm
from torch.utils.data._utils.collate import default_collate
import random
import codecs as cs


def collate_fn(batch):
    batch.sort(key=lambda x: x[3], reverse=True)
    return default_collate(batch)

class MotionDataset(data.Dataset):
    def __init__(self, opt, mean, std, split_file):
        self.opt = opt
        joints_num = opt.joints_num

        self.data = []
        self.lengths = []
        id_list = []
        with open(split_file, 'r') as f:
            for line in f.readlines():
                id_list.append(line.strip())

        for name in tqdm(id_list):
            try:
                motion = np.load(pjoin(opt.motion_dir, name + '.npy'))
                if motion.shape[0] < opt.window_size:
                    continue
                self.lengths.append(motion.shape[0] - opt.window_size)
                self.data.append(motion)
            except Exception as e:
                # Some motion may not exist in KIT dataset
                print(e)
                pass

        self.cumsum = np.cumsum([0] + self.lengths)

        if opt.is_train:
            # root_rot_velocity (B, seq_len, 1)
            std[0:1] = std[0:1] / opt.feat_bias
            # root_linear_velocity (B, seq_len, 2)
            std[1:3] = std[1:3] / opt.feat_bias
            # root_y (B, seq_len, 1)
            std[3:4] = std[3:4] / opt.feat_bias
            # ric_data (B, seq_len, (joint_num - 1)*3)
            std[4: 4 + (joints_num - 1) * 3] = std[4: 4 + (joints_num - 1) * 3] / 1.0
            # rot_data (B, seq_len, (joint_num - 1)*6)
            std[4 + (joints_num - 1) * 3: 4 + (joints_num - 1) * 9] = std[4 + (joints_num - 1) * 3: 4 + (
                    joints_num - 1) * 9] / 1.0
            # local_velocity (B, seq_len, joint_num*3)
            std[4 + (joints_num - 1) * 9: 4 + (joints_num - 1) * 9 + joints_num * 3] = std[
                                                                                       4 + (joints_num - 1) * 9: 4 + (
                                                                                               joints_num - 1) * 9 + joints_num * 3] / 1.0
            # foot contact (B, seq_len, 4)
            std[4 + (joints_num - 1) * 9 + joints_num * 3:] = std[
                                                              4 + (
                                                                          joints_num - 1) * 9 + joints_num * 3:] / opt.feat_bias

            assert 4 + (joints_num - 1) * 9 + joints_num * 3 + 4 == mean.shape[-1]
            np.save(pjoin(opt.meta_dir, 'mean.npy'), mean)
            np.save(pjoin(opt.meta_dir, 'std.npy'), std)

        self.mean = mean
        self.std = std
        print("Total number of motions {}, snippets {}".format(len(self.data), self.cumsum[-1]))

    def inv_transform(self, data):
        return data * self.std + self.mean

    def __len__(self):
        return self.cumsum[-1]

    def __getitem__(self, item):
        if item != 0:
            motion_id = np.searchsorted(self.cumsum, item) - 1
            idx = item - self.cumsum[motion_id] - 1
        else:
            motion_id = 0
            idx = 0
        motion = self.data[motion_id][idx:idx + self.opt.window_size]
        "Z Normalization"
        motion = (motion - self.mean) / self.std

        return motion


class Text2MotionDatasetEval(data.Dataset):
    def __init__(self, opt, mean, std, split_file, w_vectorizer):
        self.opt = opt
        self.w_vectorizer = w_vectorizer
        self.max_length = 20
        self.pointer = 0
        self.max_motion_length = opt.max_motion_length
        min_motion_len = 40 if self.opt.dataset_name =='t2m' else 24

        data_dict = {}
        id_list = []
        with cs.open(split_file, 'r') as f:
            for line in f.readlines():
                id_list.append(line.strip())
        # id_list = id_list[:250]

        new_name_list = []
        length_list = []
        for name in tqdm(id_list):
            try:
                motion = np.load(pjoin(opt.motion_dir, name + '.npy'))
                if (len(motion)) < min_motion_len or (len(motion) >= 200):
                    continue
                text_data = []
                flag = False
                with cs.open(pjoin(opt.text_dir, name + '.txt')) as f:
                    for line in f.readlines():
                        text_dict = {}
                        line_split = line.strip().split('#')
                        caption = line_split[0]
                        tokens = line_split[1].split(' ')
                        f_tag = float(line_split[2])
                        to_tag = float(line_split[3])
                        f_tag = 0.0 if np.isnan(f_tag) else f_tag
                        to_tag = 0.0 if np.isnan(to_tag) else to_tag

                        text_dict['caption'] = caption
                        text_dict['tokens'] = tokens
                        if f_tag == 0.0 and to_tag == 0.0:
                            flag = True
                            text_data.append(text_dict)
                        else:
                            try:
                                n_motion = motion[int(f_tag*20) : int(to_tag*20)]
                                if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200):
                                    continue
                                new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
                                while new_name in data_dict:
                                    new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
                                data_dict[new_name] = {'motion': n_motion,
                                                       'length': len(n_motion),
                                                       'text':[text_dict]}
                                new_name_list.append(new_name)
                                length_list.append(len(n_motion))
                            except:
                                print(line_split)
                                print(line_split[2], line_split[3], f_tag, to_tag, name)
                                # break

                if flag:
                    data_dict[name] = {'motion': motion,
                                       'length': len(motion),
                                       'text': text_data}
                    new_name_list.append(name)
                    length_list.append(len(motion))
            except:
                pass

        name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1]))

        self.mean = mean
        self.std = std
        self.length_arr = np.array(length_list)
        self.data_dict = data_dict
        self.name_list = name_list
        self.reset_max_len(self.max_length)

    def reset_max_len(self, length):
        assert length <= self.max_motion_length
        self.pointer = np.searchsorted(self.length_arr, length)
        print("Pointer Pointing at %d"%self.pointer)
        self.max_length = length

    def inv_transform(self, data):
        return data * self.std + self.mean

    def __len__(self):
        return len(self.data_dict) - self.pointer

    def __getitem__(self, item):
        idx = self.pointer + item
        data = self.data_dict[self.name_list[idx]]
        motion, m_length, text_list = data['motion'], data['length'], data['text']
        # Randomly select a caption
        text_data = random.choice(text_list)
        caption, tokens = text_data['caption'], text_data['tokens']

        if len(tokens) < self.opt.max_text_len:
            # pad with "unk"
            tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
            sent_len = len(tokens)
            tokens = tokens + ['unk/OTHER'] * (self.opt.max_text_len + 2 - sent_len)
        else:
            # crop
            tokens = tokens[:self.opt.max_text_len]
            tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
            sent_len = len(tokens)
        pos_one_hots = []
        word_embeddings = []
        for token in tokens:
            word_emb, pos_oh = self.w_vectorizer[token]
            pos_one_hots.append(pos_oh[None, :])
            word_embeddings.append(word_emb[None, :])
        pos_one_hots = np.concatenate(pos_one_hots, axis=0)
        word_embeddings = np.concatenate(word_embeddings, axis=0)

        if self.opt.unit_length < 10:
            coin2 = np.random.choice(['single', 'single', 'double'])
        else:
            coin2 = 'single'

        if coin2 == 'double':
            m_length = (m_length // self.opt.unit_length - 1) * self.opt.unit_length
        elif coin2 == 'single':
            m_length = (m_length // self.opt.unit_length) * self.opt.unit_length
        idx = random.randint(0, len(motion) - m_length)
        motion = motion[idx:idx+m_length]

        "Z Normalization"
        motion = (motion - self.mean) / self.std

        if m_length < self.max_motion_length:
            motion = np.concatenate([motion,
                                     np.zeros((self.max_motion_length - m_length, motion.shape[1]))
                                     ], axis=0)
        # print(word_embeddings.shape, motion.shape)
        # print(tokens)
        return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, '_'.join(tokens)


class Text2MotionDataset(data.Dataset):
    def __init__(self, opt, mean, std, split_file):
        self.opt = opt
        self.max_length = 20
        self.pointer = 0
        self.max_motion_length = opt.max_motion_length
        min_motion_len = 40 if self.opt.dataset_name =='t2m' else 24

        data_dict = {}
        id_list = []
        with cs.open(split_file, 'r') as f:
            for line in f.readlines():
                id_list.append(line.strip())
        # id_list = id_list[:250]

        new_name_list = []
        length_list = []
        for name in tqdm(id_list):
            try:
                motion = np.load(pjoin(opt.motion_dir, name + '.npy'))
                if (len(motion)) < min_motion_len or (len(motion) >= 200):
                    continue
                text_data = []
                flag = False
                with cs.open(pjoin(opt.text_dir, name + '.txt')) as f:
                    for line in f.readlines():
                        text_dict = {}
                        line_split = line.strip().split('#')
                        # print(line)
                        caption = line_split[0]
                        tokens = line_split[1].split(' ')
                        f_tag = float(line_split[2])
                        to_tag = float(line_split[3])
                        f_tag = 0.0 if np.isnan(f_tag) else f_tag
                        to_tag = 0.0 if np.isnan(to_tag) else to_tag

                        text_dict['caption'] = caption
                        text_dict['tokens'] = tokens
                        if f_tag == 0.0 and to_tag == 0.0:
                            flag = True
                            text_data.append(text_dict)
                        else:
                            try:
                                n_motion = motion[int(f_tag*20) : int(to_tag*20)]
                                if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200):
                                    continue
                                new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
                                while new_name in data_dict:
                                    new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
                                data_dict[new_name] = {'motion': n_motion,
                                                       'length': len(n_motion),
                                                       'text':[text_dict]}
                                new_name_list.append(new_name)
                                length_list.append(len(n_motion))
                            except:
                                print(line_split)
                                print(line_split[2], line_split[3], f_tag, to_tag, name)
                                # break

                if flag:
                    data_dict[name] = {'motion': motion,
                                       'length': len(motion),
                                       'text': text_data}
                    new_name_list.append(name)
                    length_list.append(len(motion))
            except Exception as e:
                # print(e)
                pass

        # name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1]))
        name_list, length_list = new_name_list, length_list

        self.mean = mean
        self.std = std
        self.length_arr = np.array(length_list)
        self.data_dict = data_dict
        self.name_list = name_list

    def inv_transform(self, data):
        return data * self.std + self.mean

    def __len__(self):
        return len(self.data_dict) - self.pointer

    def __getitem__(self, item):
        idx = self.pointer + item
        data = self.data_dict[self.name_list[idx]]
        motion, m_length, text_list = data['motion'], data['length'], data['text']
        # Randomly select a caption
        text_data = random.choice(text_list)
        caption, tokens = text_data['caption'], text_data['tokens']

        if self.opt.unit_length < 10:
            coin2 = np.random.choice(['single', 'single', 'double'])
        else:
            coin2 = 'single'

        if coin2 == 'double':
            m_length = (m_length // self.opt.unit_length - 1) * self.opt.unit_length
        elif coin2 == 'single':
            m_length = (m_length // self.opt.unit_length) * self.opt.unit_length
        idx = random.randint(0, len(motion) - m_length)
        motion = motion[idx:idx+m_length]

        "Z Normalization"
        motion = (motion - self.mean) / self.std

        if m_length < self.max_motion_length:
            motion = np.concatenate([motion,
                                     np.zeros((self.max_motion_length - m_length, motion.shape[1]))
                                     ], axis=0)
        # print(word_embeddings.shape, motion.shape)
        # print(tokens)
        return caption, motion, m_length

    def reset_min_len(self, length):
        assert length <= self.max_motion_length
        self.pointer = np.searchsorted(self.length_arr, length)
        print("Pointer Pointing at %d" % self.pointer)