File size: 5,892 Bytes
823807d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import numpy as np
from scipy import linalg
import torch


def calculate_mpjpe(gt_joints, pred_joints):
    """
    gt_joints: num_poses x num_joints(22) x 3
    pred_joints: num_poses x num_joints(22) x 3
    (obtained from recover_from_ric())
    """
    assert gt_joints.shape == pred_joints.shape, f"GT shape: {gt_joints.shape}, pred shape: {pred_joints.shape}"

    # Align by root (pelvis)
    pelvis = gt_joints[:, [0]].mean(1)
    gt_joints = gt_joints - torch.unsqueeze(pelvis, dim=1)
    pelvis = pred_joints[:, [0]].mean(1)
    pred_joints = pred_joints - torch.unsqueeze(pelvis, dim=1)

    # Compute MPJPE
    mpjpe = torch.linalg.norm(pred_joints - gt_joints, dim=-1) # num_poses x num_joints=22
    mpjpe_seq = mpjpe.mean(-1) # num_poses

    return mpjpe_seq

# (X - X_train)*(X - X_train) = -2X*X_train + X*X + X_train*X_train
def euclidean_distance_matrix(matrix1, matrix2):
    """
        Params:
        -- matrix1: N1 x D
        -- matrix2: N2 x D
        Returns:
        -- dist: N1 x N2
        dist[i, j] == distance(matrix1[i], matrix2[j])
    """
    assert matrix1.shape[1] == matrix2.shape[1]
    d1 = -2 * np.dot(matrix1, matrix2.T)    # shape (num_test, num_train)
    d2 = np.sum(np.square(matrix1), axis=1, keepdims=True)    # shape (num_test, 1)
    d3 = np.sum(np.square(matrix2), axis=1)     # shape (num_train, )
    dists = np.sqrt(d1 + d2 + d3)  # broadcasting
    return dists

def calculate_top_k(mat, top_k):
    size = mat.shape[0]
    gt_mat = np.expand_dims(np.arange(size), 1).repeat(size, 1)
    bool_mat = (mat == gt_mat)
    correct_vec = False
    top_k_list = []
    for i in range(top_k):
#         print(correct_vec, bool_mat[:, i])
        correct_vec = (correct_vec | bool_mat[:, i])
        # print(correct_vec)
        top_k_list.append(correct_vec[:, None])
    top_k_mat = np.concatenate(top_k_list, axis=1)
    return top_k_mat


def calculate_R_precision(embedding1, embedding2, top_k, sum_all=False):
    dist_mat = euclidean_distance_matrix(embedding1, embedding2)
    argmax = np.argsort(dist_mat, axis=1)
    top_k_mat = calculate_top_k(argmax, top_k)
    if sum_all:
        return top_k_mat.sum(axis=0)
    else:
        return top_k_mat


def calculate_matching_score(embedding1, embedding2, sum_all=False):
    assert len(embedding1.shape) == 2
    assert embedding1.shape[0] == embedding2.shape[0]
    assert embedding1.shape[1] == embedding2.shape[1]

    dist = linalg.norm(embedding1 - embedding2, axis=1)
    if sum_all:
        return dist.sum(axis=0)
    else:
        return dist



def calculate_activation_statistics(activations):
    """
    Params:
    -- activation: num_samples x dim_feat
    Returns:
    -- mu: dim_feat
    -- sigma: dim_feat x dim_feat
    """
    mu = np.mean(activations, axis=0)
    cov = np.cov(activations, rowvar=False)
    return mu, cov


def calculate_diversity(activation, diversity_times):
    assert len(activation.shape) == 2
    assert activation.shape[0] > diversity_times
    num_samples = activation.shape[0]

    first_indices = np.random.choice(num_samples, diversity_times, replace=False)
    second_indices = np.random.choice(num_samples, diversity_times, replace=False)
    dist = linalg.norm(activation[first_indices] - activation[second_indices], axis=1)
    return dist.mean()


def calculate_multimodality(activation, multimodality_times):
    assert len(activation.shape) == 3
    assert activation.shape[1] > multimodality_times
    num_per_sent = activation.shape[1]

    first_dices = np.random.choice(num_per_sent, multimodality_times, replace=False)
    second_dices = np.random.choice(num_per_sent, multimodality_times, replace=False)
    dist = linalg.norm(activation[:, first_dices] - activation[:, second_dices], axis=2)
    return dist.mean()


def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
    """Numpy implementation of the Frechet Distance.
    The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
    and X_2 ~ N(mu_2, C_2) is
            d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
    Stable version by Dougal J. Sutherland.
    Params:
    -- mu1   : Numpy array containing the activations of a layer of the
               inception net (like returned by the function 'get_predictions')
               for generated samples.
    -- mu2   : The sample mean over activations, precalculated on an
               representative data set.
    -- sigma1: The covariance matrix over activations for generated samples.
    -- sigma2: The covariance matrix over activations, precalculated on an
               representative data set.
    Returns:
    --   : The Frechet Distance.
    """

    mu1 = np.atleast_1d(mu1)
    mu2 = np.atleast_1d(mu2)

    sigma1 = np.atleast_2d(sigma1)
    sigma2 = np.atleast_2d(sigma2)

    assert mu1.shape == mu2.shape, \
        'Training and test mean vectors have different lengths'
    assert sigma1.shape == sigma2.shape, \
        'Training and test covariances have different dimensions'

    diff = mu1 - mu2

    # Product might be almost singular
    covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
    if not np.isfinite(covmean).all():
        msg = ('fid calculation produces singular product; '
               'adding %s to diagonal of cov estimates') % eps
        print(msg)
        offset = np.eye(sigma1.shape[0]) * eps
        covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))

    # Numerical error might give slight imaginary component
    if np.iscomplexobj(covmean):
        if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
            m = np.max(np.abs(covmean.imag))
            raise ValueError('Imaginary component {}'.format(m))
        covmean = covmean.real

    tr_covmean = np.trace(covmean)

    return (diff.dot(diff) + np.trace(sigma1) +
            np.trace(sigma2) - 2 * tr_covmean)