|
import os |
|
from os.path import join as pjoin |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from models.mask_transformer.transformer import MaskTransformer, ResidualTransformer |
|
from models.vq.model import RVQVAE, LengthEstimator |
|
|
|
from options.eval_option import EvalT2MOptions |
|
from utils.get_opt import get_opt |
|
|
|
from utils.fixseed import fixseed |
|
from visualization.joints2bvh import Joint2BVHConvertor |
|
|
|
from utils.motion_process import recover_from_ric |
|
from utils.plot_script import plot_3d_motion |
|
|
|
from utils.paramUtil import t2m_kinematic_chain |
|
|
|
import numpy as np |
|
|
|
from gen_t2m import load_vq_model, load_res_model, load_trans_model |
|
|
|
if __name__ == '__main__': |
|
parser = EvalT2MOptions() |
|
opt = parser.parse() |
|
fixseed(opt.seed) |
|
|
|
opt.device = torch.device("cpu" if opt.gpu_id == -1 else "cuda:" + str(opt.gpu_id)) |
|
torch.autograd.set_detect_anomaly(True) |
|
|
|
dim_pose = 251 if opt.dataset_name == 'kit' else 263 |
|
|
|
root_dir = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name) |
|
model_dir = pjoin(root_dir, 'model') |
|
result_dir = pjoin('./editing', opt.ext) |
|
joints_dir = pjoin(result_dir, 'joints') |
|
animation_dir = pjoin(result_dir, 'animations') |
|
os.makedirs(joints_dir, exist_ok=True) |
|
os.makedirs(animation_dir,exist_ok=True) |
|
|
|
model_opt_path = pjoin(root_dir, 'opt.txt') |
|
model_opt = get_opt(model_opt_path, device=opt.device) |
|
|
|
|
|
|
|
|
|
vq_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'opt.txt') |
|
vq_opt = get_opt(vq_opt_path, device=opt.device) |
|
vq_opt.dim_pose = dim_pose |
|
vq_model, vq_opt = load_vq_model(vq_opt) |
|
|
|
model_opt.num_tokens = vq_opt.nb_code |
|
model_opt.num_quantizers = vq_opt.num_quantizers |
|
model_opt.code_dim = vq_opt.code_dim |
|
|
|
|
|
|
|
|
|
res_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.res_name, 'opt.txt') |
|
res_opt = get_opt(res_opt_path, device=opt.device) |
|
res_model = load_res_model(res_opt, vq_opt, opt) |
|
|
|
assert res_opt.vq_name == model_opt.vq_name |
|
|
|
|
|
|
|
|
|
t2m_transformer = load_trans_model(model_opt, opt, 'latest.tar') |
|
|
|
t2m_transformer.eval() |
|
vq_model.eval() |
|
res_model.eval() |
|
|
|
res_model.to(opt.device) |
|
t2m_transformer.to(opt.device) |
|
vq_model.to(opt.device) |
|
|
|
|
|
max_motion_length = 196 |
|
mean = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'meta', 'mean.npy')) |
|
std = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'meta', 'std.npy')) |
|
def inv_transform(data): |
|
return data * std + mean |
|
|
|
motion = np.load(opt.source_motion) |
|
m_length = len(motion) |
|
motion = (motion - mean) / std |
|
if max_motion_length > m_length: |
|
motion = np.concatenate([motion, np.zeros((max_motion_length - m_length, motion.shape[1])) ], axis=0) |
|
motion = torch.from_numpy(motion)[None].to(opt.device) |
|
|
|
prompt_list = [] |
|
length_list = [] |
|
if opt.motion_length == 0: |
|
opt.motion_length = m_length |
|
print("Using default motion length.") |
|
|
|
prompt_list.append(opt.text_prompt) |
|
length_list.append(opt.motion_length) |
|
if opt.text_prompt == "": |
|
raise "Using an empty text prompt." |
|
|
|
token_lens = torch.LongTensor(length_list) // 4 |
|
token_lens = token_lens.to(opt.device).long() |
|
|
|
m_length = token_lens * 4 |
|
captions = prompt_list |
|
print_captions = captions[0] |
|
|
|
_edit_slice = opt.mask_edit_section |
|
edit_slice = [] |
|
for eds in _edit_slice: |
|
_start, _end = eds.split(',') |
|
_start = eval(_start) |
|
_end = eval(_end) |
|
edit_slice.append([_start, _end]) |
|
|
|
sample = 0 |
|
kinematic_chain = t2m_kinematic_chain |
|
converter = Joint2BVHConvertor() |
|
|
|
with torch.no_grad(): |
|
tokens, features = vq_model.encode(motion) |
|
|
|
edit_mask = torch.zeros_like(tokens[..., 0]) |
|
seq_len = tokens.shape[1] |
|
for _start, _end in edit_slice: |
|
if isinstance(_start, float): |
|
_start = int(_start*seq_len) |
|
_end = int(_end*seq_len) |
|
else: |
|
_start //= 4 |
|
_end //= 4 |
|
edit_mask[:, _start: _end] = 1 |
|
print_captions = f'{print_captions} [{_start*4/20.}s - {_end*4/20.}s]' |
|
edit_mask = edit_mask.bool() |
|
for r in range(opt.repeat_times): |
|
print("-->Repeat %d"%r) |
|
with torch.no_grad(): |
|
mids = t2m_transformer.edit( |
|
captions, tokens[..., 0].clone(), m_length//4, |
|
timesteps=opt.time_steps, |
|
cond_scale=opt.cond_scale, |
|
temperature=opt.temperature, |
|
topk_filter_thres=opt.topkr, |
|
gsample=opt.gumbel_sample, |
|
force_mask=opt.force_mask, |
|
edit_mask=edit_mask.clone(), |
|
) |
|
if opt.use_res_model: |
|
mids = res_model.generate(mids, captions, m_length//4, temperature=1, cond_scale=2) |
|
else: |
|
mids.unsqueeze_(-1) |
|
|
|
pred_motions = vq_model.forward_decoder(mids) |
|
|
|
pred_motions = pred_motions.detach().cpu().numpy() |
|
|
|
source_motions = motion.detach().cpu().numpy() |
|
|
|
data = inv_transform(pred_motions) |
|
source_data = inv_transform(source_motions) |
|
|
|
for k, (caption, joint_data, source_data) in enumerate(zip(captions, data, source_data)): |
|
print("---->Sample %d: %s %d"%(k, caption, m_length[k])) |
|
animation_path = pjoin(animation_dir, str(k)) |
|
joint_path = pjoin(joints_dir, str(k)) |
|
|
|
os.makedirs(animation_path, exist_ok=True) |
|
os.makedirs(joint_path, exist_ok=True) |
|
|
|
joint_data = joint_data[:m_length[k]] |
|
joint = recover_from_ric(torch.from_numpy(joint_data).float(), 22).numpy() |
|
|
|
source_data = source_data[:m_length[k]] |
|
soucre_joint = recover_from_ric(torch.from_numpy(source_data).float(), 22).numpy() |
|
|
|
bvh_path = pjoin(animation_path, "sample%d_repeat%d_len%d_ik.bvh"%(k, r, m_length[k])) |
|
_, ik_joint = converter.convert(joint, filename=bvh_path, iterations=100) |
|
|
|
bvh_path = pjoin(animation_path, "sample%d_repeat%d_len%d.bvh" % (k, r, m_length[k])) |
|
_, joint = converter.convert(joint, filename=bvh_path, iterations=100, foot_ik=False) |
|
|
|
|
|
save_path = pjoin(animation_path, "sample%d_repeat%d_len%d.mp4"%(k, r, m_length[k])) |
|
ik_save_path = pjoin(animation_path, "sample%d_repeat%d_len%d_ik.mp4"%(k, r, m_length[k])) |
|
source_save_path = pjoin(animation_path, "sample%d_source_len%d.mp4"%(k, m_length[k])) |
|
|
|
plot_3d_motion(ik_save_path, kinematic_chain, ik_joint, title=print_captions, fps=20) |
|
plot_3d_motion(save_path, kinematic_chain, joint, title=print_captions, fps=20) |
|
plot_3d_motion(source_save_path, kinematic_chain, soucre_joint, title='None', fps=20) |
|
np.save(pjoin(joint_path, "sample%d_repeat%d_len%d.npy"%(k, r, m_length[k])), joint) |
|
np.save(pjoin(joint_path, "sample%d_repeat%d_len%d_ik.npy"%(k, r, m_length[k])), ik_joint) |