|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import numpy as np |
|
|
|
_EPS4 = np.finfo(float).eps * 4.0 |
|
|
|
_FLOAT_EPS = np.finfo(float).eps |
|
|
|
|
|
def qinv(q): |
|
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)' |
|
mask = torch.ones_like(q) |
|
mask[..., 1:] = -mask[..., 1:] |
|
return q * mask |
|
|
|
|
|
def qinv_np(q): |
|
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)' |
|
return qinv(torch.from_numpy(q).float()).numpy() |
|
|
|
|
|
def qnormalize(q): |
|
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)' |
|
return q / torch.norm(q, dim=-1, keepdim=True) |
|
|
|
|
|
def qmul(q, r): |
|
""" |
|
Multiply quaternion(s) q with quaternion(s) r. |
|
Expects two equally-sized tensors of shape (*, 4), where * denotes any number of dimensions. |
|
Returns q*r as a tensor of shape (*, 4). |
|
""" |
|
assert q.shape[-1] == 4 |
|
assert r.shape[-1] == 4 |
|
|
|
original_shape = q.shape |
|
|
|
|
|
terms = torch.bmm(r.view(-1, 4, 1), q.view(-1, 1, 4)) |
|
|
|
w = terms[:, 0, 0] - terms[:, 1, 1] - terms[:, 2, 2] - terms[:, 3, 3] |
|
x = terms[:, 0, 1] + terms[:, 1, 0] - terms[:, 2, 3] + terms[:, 3, 2] |
|
y = terms[:, 0, 2] + terms[:, 1, 3] + terms[:, 2, 0] - terms[:, 3, 1] |
|
z = terms[:, 0, 3] - terms[:, 1, 2] + terms[:, 2, 1] + terms[:, 3, 0] |
|
return torch.stack((w, x, y, z), dim=1).view(original_shape) |
|
|
|
|
|
def qrot(q, v): |
|
""" |
|
Rotate vector(s) v about the rotation described by quaternion(s) q. |
|
Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v, |
|
where * denotes any number of dimensions. |
|
Returns a tensor of shape (*, 3). |
|
""" |
|
assert q.shape[-1] == 4 |
|
assert v.shape[-1] == 3 |
|
assert q.shape[:-1] == v.shape[:-1] |
|
|
|
original_shape = list(v.shape) |
|
|
|
q = q.contiguous().view(-1, 4) |
|
v = v.contiguous().view(-1, 3) |
|
|
|
qvec = q[:, 1:] |
|
uv = torch.cross(qvec, v, dim=1) |
|
uuv = torch.cross(qvec, uv, dim=1) |
|
return (v + 2 * (q[:, :1] * uv + uuv)).view(original_shape) |
|
|
|
|
|
def qeuler(q, order, epsilon=0, deg=True): |
|
""" |
|
Convert quaternion(s) q to Euler angles. |
|
Expects a tensor of shape (*, 4), where * denotes any number of dimensions. |
|
Returns a tensor of shape (*, 3). |
|
""" |
|
assert q.shape[-1] == 4 |
|
|
|
original_shape = list(q.shape) |
|
original_shape[-1] = 3 |
|
q = q.view(-1, 4) |
|
|
|
q0 = q[:, 0] |
|
q1 = q[:, 1] |
|
q2 = q[:, 2] |
|
q3 = q[:, 3] |
|
|
|
if order == 'xyz': |
|
x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2)) |
|
y = torch.asin(torch.clamp(2 * (q1 * q3 + q0 * q2), -1 + epsilon, 1 - epsilon)) |
|
z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3)) |
|
elif order == 'yzx': |
|
x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2 * (q1 * q1 + q3 * q3)) |
|
y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2 * (q2 * q2 + q3 * q3)) |
|
z = torch.asin(torch.clamp(2 * (q1 * q2 + q0 * q3), -1 + epsilon, 1 - epsilon)) |
|
elif order == 'zxy': |
|
x = torch.asin(torch.clamp(2 * (q0 * q1 + q2 * q3), -1 + epsilon, 1 - epsilon)) |
|
y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2 * (q1 * q1 + q2 * q2)) |
|
z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2 * (q1 * q1 + q3 * q3)) |
|
elif order == 'xzy': |
|
x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q3 * q3)) |
|
y = torch.atan2(2 * (q0 * q2 + q1 * q3), 1 - 2 * (q2 * q2 + q3 * q3)) |
|
z = torch.asin(torch.clamp(2 * (q0 * q3 - q1 * q2), -1 + epsilon, 1 - epsilon)) |
|
elif order == 'yxz': |
|
x = torch.asin(torch.clamp(2 * (q0 * q1 - q2 * q3), -1 + epsilon, 1 - epsilon)) |
|
y = torch.atan2(2 * (q1 * q3 + q0 * q2), 1 - 2 * (q1 * q1 + q2 * q2)) |
|
z = torch.atan2(2 * (q1 * q2 + q0 * q3), 1 - 2 * (q1 * q1 + q3 * q3)) |
|
elif order == 'zyx': |
|
x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2)) |
|
y = torch.asin(torch.clamp(2 * (q0 * q2 - q1 * q3), -1 + epsilon, 1 - epsilon)) |
|
z = torch.atan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3)) |
|
else: |
|
raise |
|
|
|
if deg: |
|
return torch.stack((x, y, z), dim=1).view(original_shape) * 180 / np.pi |
|
else: |
|
return torch.stack((x, y, z), dim=1).view(original_shape) |
|
|
|
|
|
|
|
|
|
def qmul_np(q, r): |
|
q = torch.from_numpy(q).contiguous().float() |
|
r = torch.from_numpy(r).contiguous().float() |
|
return qmul(q, r).numpy() |
|
|
|
|
|
def qrot_np(q, v): |
|
q = torch.from_numpy(q).contiguous().float() |
|
v = torch.from_numpy(v).contiguous().float() |
|
return qrot(q, v).numpy() |
|
|
|
|
|
def qeuler_np(q, order, epsilon=0, use_gpu=False): |
|
if use_gpu: |
|
q = torch.from_numpy(q).cuda().float() |
|
return qeuler(q, order, epsilon).cpu().numpy() |
|
else: |
|
q = torch.from_numpy(q).contiguous().float() |
|
return qeuler(q, order, epsilon).numpy() |
|
|
|
|
|
def qfix(q): |
|
""" |
|
Enforce quaternion continuity across the time dimension by selecting |
|
the representation (q or -q) with minimal distance (or, equivalently, maximal dot product) |
|
between two consecutive frames. |
|
|
|
Expects a tensor of shape (L, J, 4), where L is the sequence length and J is the number of joints. |
|
Returns a tensor of the same shape. |
|
""" |
|
assert len(q.shape) == 3 |
|
assert q.shape[-1] == 4 |
|
|
|
result = q.copy() |
|
dot_products = np.sum(q[1:] * q[:-1], axis=2) |
|
mask = dot_products < 0 |
|
mask = (np.cumsum(mask, axis=0) % 2).astype(bool) |
|
result[1:][mask] *= -1 |
|
return result |
|
|
|
|
|
def euler2quat(e, order, deg=True): |
|
""" |
|
Convert Euler angles to quaternions. |
|
""" |
|
assert e.shape[-1] == 3 |
|
|
|
original_shape = list(e.shape) |
|
original_shape[-1] = 4 |
|
|
|
e = e.view(-1, 3) |
|
|
|
|
|
if deg: |
|
e = e * np.pi / 180. |
|
|
|
x = e[:, 0] |
|
y = e[:, 1] |
|
z = e[:, 2] |
|
|
|
rx = torch.stack((torch.cos(x / 2), torch.sin(x / 2), torch.zeros_like(x), torch.zeros_like(x)), dim=1) |
|
ry = torch.stack((torch.cos(y / 2), torch.zeros_like(y), torch.sin(y / 2), torch.zeros_like(y)), dim=1) |
|
rz = torch.stack((torch.cos(z / 2), torch.zeros_like(z), torch.zeros_like(z), torch.sin(z / 2)), dim=1) |
|
|
|
result = None |
|
for coord in order: |
|
if coord == 'x': |
|
r = rx |
|
elif coord == 'y': |
|
r = ry |
|
elif coord == 'z': |
|
r = rz |
|
else: |
|
raise |
|
if result is None: |
|
result = r |
|
else: |
|
result = qmul(result, r) |
|
|
|
|
|
if order in ['xyz', 'yzx', 'zxy']: |
|
result *= -1 |
|
|
|
return result.view(original_shape) |
|
|
|
|
|
def expmap_to_quaternion(e): |
|
""" |
|
Convert axis-angle rotations (aka exponential maps) to quaternions. |
|
Stable formula from "Practical Parameterization of Rotations Using the Exponential Map". |
|
Expects a tensor of shape (*, 3), where * denotes any number of dimensions. |
|
Returns a tensor of shape (*, 4). |
|
""" |
|
assert e.shape[-1] == 3 |
|
|
|
original_shape = list(e.shape) |
|
original_shape[-1] = 4 |
|
e = e.reshape(-1, 3) |
|
|
|
theta = np.linalg.norm(e, axis=1).reshape(-1, 1) |
|
w = np.cos(0.5 * theta).reshape(-1, 1) |
|
xyz = 0.5 * np.sinc(0.5 * theta / np.pi) * e |
|
return np.concatenate((w, xyz), axis=1).reshape(original_shape) |
|
|
|
|
|
def euler_to_quaternion(e, order): |
|
""" |
|
Convert Euler angles to quaternions. |
|
""" |
|
assert e.shape[-1] == 3 |
|
|
|
original_shape = list(e.shape) |
|
original_shape[-1] = 4 |
|
|
|
e = e.reshape(-1, 3) |
|
|
|
x = e[:, 0] |
|
y = e[:, 1] |
|
z = e[:, 2] |
|
|
|
rx = np.stack((np.cos(x / 2), np.sin(x / 2), np.zeros_like(x), np.zeros_like(x)), axis=1) |
|
ry = np.stack((np.cos(y / 2), np.zeros_like(y), np.sin(y / 2), np.zeros_like(y)), axis=1) |
|
rz = np.stack((np.cos(z / 2), np.zeros_like(z), np.zeros_like(z), np.sin(z / 2)), axis=1) |
|
|
|
result = None |
|
for coord in order: |
|
if coord == 'x': |
|
r = rx |
|
elif coord == 'y': |
|
r = ry |
|
elif coord == 'z': |
|
r = rz |
|
else: |
|
raise |
|
if result is None: |
|
result = r |
|
else: |
|
result = qmul_np(result, r) |
|
|
|
|
|
if order in ['xyz', 'yzx', 'zxy']: |
|
result *= -1 |
|
|
|
return result.reshape(original_shape) |
|
|
|
|
|
def quaternion_to_matrix(quaternions): |
|
""" |
|
Convert rotations given as quaternions to rotation matrices. |
|
Args: |
|
quaternions: quaternions with real part first, |
|
as tensor of shape (..., 4). |
|
Returns: |
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
""" |
|
r, i, j, k = torch.unbind(quaternions, -1) |
|
two_s = 2.0 / (quaternions * quaternions).sum(-1) |
|
|
|
o = torch.stack( |
|
( |
|
1 - two_s * (j * j + k * k), |
|
two_s * (i * j - k * r), |
|
two_s * (i * k + j * r), |
|
two_s * (i * j + k * r), |
|
1 - two_s * (i * i + k * k), |
|
two_s * (j * k - i * r), |
|
two_s * (i * k - j * r), |
|
two_s * (j * k + i * r), |
|
1 - two_s * (i * i + j * j), |
|
), |
|
-1, |
|
) |
|
return o.reshape(quaternions.shape[:-1] + (3, 3)) |
|
|
|
|
|
def quaternion_to_matrix_np(quaternions): |
|
q = torch.from_numpy(quaternions).contiguous().float() |
|
return quaternion_to_matrix(q).numpy() |
|
|
|
|
|
def quaternion_to_cont6d_np(quaternions): |
|
rotation_mat = quaternion_to_matrix_np(quaternions) |
|
cont_6d = np.concatenate([rotation_mat[..., 0], rotation_mat[..., 1]], axis=-1) |
|
return cont_6d |
|
|
|
|
|
def quaternion_to_cont6d(quaternions): |
|
rotation_mat = quaternion_to_matrix(quaternions) |
|
cont_6d = torch.cat([rotation_mat[..., 0], rotation_mat[..., 1]], dim=-1) |
|
return cont_6d |
|
|
|
|
|
def cont6d_to_matrix(cont6d): |
|
assert cont6d.shape[-1] == 6, "The last dimension must be 6" |
|
x_raw = cont6d[..., 0:3] |
|
y_raw = cont6d[..., 3:6] |
|
|
|
x = x_raw / torch.norm(x_raw, dim=-1, keepdim=True) |
|
z = torch.cross(x, y_raw, dim=-1) |
|
z = z / torch.norm(z, dim=-1, keepdim=True) |
|
|
|
y = torch.cross(z, x, dim=-1) |
|
|
|
x = x[..., None] |
|
y = y[..., None] |
|
z = z[..., None] |
|
|
|
mat = torch.cat([x, y, z], dim=-1) |
|
return mat |
|
|
|
|
|
def cont6d_to_matrix_np(cont6d): |
|
q = torch.from_numpy(cont6d).contiguous().float() |
|
return cont6d_to_matrix(q).numpy() |
|
|
|
|
|
def qpow(q0, t, dtype=torch.float): |
|
''' q0 : tensor of quaternions |
|
t: tensor of powers |
|
''' |
|
q0 = qnormalize(q0) |
|
theta0 = torch.acos(q0[..., 0]) |
|
|
|
|
|
mask = (theta0 <= 10e-10) * (theta0 >= -10e-10) |
|
theta0 = (1 - mask) * theta0 + mask * 10e-10 |
|
v0 = q0[..., 1:] / torch.sin(theta0).view(-1, 1) |
|
|
|
if isinstance(t, torch.Tensor): |
|
q = torch.zeros(t.shape + q0.shape) |
|
theta = t.view(-1, 1) * theta0.view(1, -1) |
|
else: |
|
q = torch.zeros(q0.shape) |
|
theta = t * theta0 |
|
|
|
q[..., 0] = torch.cos(theta) |
|
q[..., 1:] = v0 * torch.sin(theta).unsqueeze(-1) |
|
|
|
return q.to(dtype) |
|
|
|
|
|
def qslerp(q0, q1, t): |
|
''' |
|
q0: starting quaternion |
|
q1: ending quaternion |
|
t: array of points along the way |
|
|
|
Returns: |
|
Tensor of Slerps: t.shape + q0.shape |
|
''' |
|
|
|
q0 = qnormalize(q0) |
|
q1 = qnormalize(q1) |
|
q_ = qpow(qmul(q1, qinv(q0)), t) |
|
|
|
return qmul(q_, |
|
q0.contiguous().view(torch.Size([1] * len(t.shape)) + q0.shape).expand(t.shape + q0.shape).contiguous()) |
|
|
|
|
|
def qbetween(v0, v1): |
|
''' |
|
find the quaternion used to rotate v0 to v1 |
|
''' |
|
assert v0.shape[-1] == 3, 'v0 must be of the shape (*, 3)' |
|
assert v1.shape[-1] == 3, 'v1 must be of the shape (*, 3)' |
|
|
|
v = torch.cross(v0, v1) |
|
w = torch.sqrt((v0 ** 2).sum(dim=-1, keepdim=True) * (v1 ** 2).sum(dim=-1, keepdim=True)) + (v0 * v1).sum(dim=-1, |
|
keepdim=True) |
|
return qnormalize(torch.cat([w, v], dim=-1)) |
|
|
|
|
|
def qbetween_np(v0, v1): |
|
''' |
|
find the quaternion used to rotate v0 to v1 |
|
''' |
|
assert v0.shape[-1] == 3, 'v0 must be of the shape (*, 3)' |
|
assert v1.shape[-1] == 3, 'v1 must be of the shape (*, 3)' |
|
|
|
v0 = torch.from_numpy(v0).float() |
|
v1 = torch.from_numpy(v1).float() |
|
return qbetween(v0, v1).numpy() |
|
|
|
|
|
def lerp(p0, p1, t): |
|
if not isinstance(t, torch.Tensor): |
|
t = torch.Tensor([t]) |
|
|
|
new_shape = t.shape + p0.shape |
|
new_view_t = t.shape + torch.Size([1] * len(p0.shape)) |
|
new_view_p = torch.Size([1] * len(t.shape)) + p0.shape |
|
p0 = p0.view(new_view_p).expand(new_shape) |
|
p1 = p1.view(new_view_p).expand(new_shape) |
|
t = t.view(new_view_t).expand(new_shape) |
|
|
|
return p0 + t * (p1 - p0) |
|
|