|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import time |
|
import math |
|
import random |
|
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence |
|
|
|
|
|
|
|
def init_weight(m): |
|
if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d): |
|
nn.init.xavier_normal_(m.weight) |
|
|
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
|
|
def positional_encoding(batch_size, dim, pos): |
|
assert batch_size == pos.shape[0] |
|
positions_enc = np.array([ |
|
[pos[j] / np.power(10000, (i-i%2)/dim) for i in range(dim)] |
|
for j in range(batch_size) |
|
], dtype=np.float32) |
|
positions_enc[:, 0::2] = np.sin(positions_enc[:, 0::2]) |
|
positions_enc[:, 1::2] = np.cos(positions_enc[:, 1::2]) |
|
return torch.from_numpy(positions_enc).float() |
|
|
|
|
|
def get_padding_mask(batch_size, seq_len, cap_lens): |
|
cap_lens = cap_lens.data.tolist() |
|
mask_2d = torch.ones((batch_size, seq_len, seq_len), dtype=torch.float32) |
|
for i, cap_len in enumerate(cap_lens): |
|
mask_2d[i, :, :cap_len] = 0 |
|
return mask_2d.bool(), 1 - mask_2d[:, :, 0].clone() |
|
|
|
|
|
def top_k_logits(logits, k): |
|
v, ix = torch.topk(logits, k) |
|
out = logits.clone() |
|
out[out < v[:, [-1]]] = -float('Inf') |
|
return out |
|
|
|
|
|
class PositionalEncoding(nn.Module): |
|
|
|
def __init__(self, d_model, max_len=300): |
|
super(PositionalEncoding, self).__init__() |
|
|
|
pe = torch.zeros(max_len, d_model) |
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
|
|
self.register_buffer('pe', pe) |
|
|
|
def forward(self, pos): |
|
return self.pe[pos] |
|
|
|
|
|
class MovementConvEncoder(nn.Module): |
|
def __init__(self, input_size, hidden_size, output_size): |
|
super(MovementConvEncoder, self).__init__() |
|
self.main = nn.Sequential( |
|
nn.Conv1d(input_size, hidden_size, 4, 2, 1), |
|
nn.Dropout(0.2, inplace=True), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
nn.Conv1d(hidden_size, output_size, 4, 2, 1), |
|
nn.Dropout(0.2, inplace=True), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
) |
|
self.out_net = nn.Linear(output_size, output_size) |
|
self.main.apply(init_weight) |
|
self.out_net.apply(init_weight) |
|
|
|
def forward(self, inputs): |
|
inputs = inputs.permute(0, 2, 1) |
|
outputs = self.main(inputs).permute(0, 2, 1) |
|
|
|
return self.out_net(outputs) |
|
|
|
|
|
class MovementConvDecoder(nn.Module): |
|
def __init__(self, input_size, hidden_size, output_size): |
|
super(MovementConvDecoder, self).__init__() |
|
self.main = nn.Sequential( |
|
nn.ConvTranspose1d(input_size, hidden_size, 4, 2, 1), |
|
|
|
nn.LeakyReLU(0.2, inplace=True), |
|
nn.ConvTranspose1d(hidden_size, output_size, 4, 2, 1), |
|
|
|
nn.LeakyReLU(0.2, inplace=True), |
|
) |
|
self.out_net = nn.Linear(output_size, output_size) |
|
|
|
self.main.apply(init_weight) |
|
self.out_net.apply(init_weight) |
|
|
|
def forward(self, inputs): |
|
inputs = inputs.permute(0, 2, 1) |
|
outputs = self.main(inputs).permute(0, 2, 1) |
|
return self.out_net(outputs) |
|
|
|
class TextEncoderBiGRUCo(nn.Module): |
|
def __init__(self, word_size, pos_size, hidden_size, output_size, device): |
|
super(TextEncoderBiGRUCo, self).__init__() |
|
self.device = device |
|
|
|
self.pos_emb = nn.Linear(pos_size, word_size) |
|
self.input_emb = nn.Linear(word_size, hidden_size) |
|
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True) |
|
self.output_net = nn.Sequential( |
|
nn.Linear(hidden_size * 2, hidden_size), |
|
nn.LayerNorm(hidden_size), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
nn.Linear(hidden_size, output_size) |
|
) |
|
|
|
self.input_emb.apply(init_weight) |
|
self.pos_emb.apply(init_weight) |
|
self.output_net.apply(init_weight) |
|
|
|
|
|
self.hidden_size = hidden_size |
|
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True)) |
|
|
|
|
|
def forward(self, word_embs, pos_onehot, cap_lens): |
|
num_samples = word_embs.shape[0] |
|
|
|
pos_embs = self.pos_emb(pos_onehot) |
|
inputs = word_embs + pos_embs |
|
input_embs = self.input_emb(inputs) |
|
hidden = self.hidden.repeat(1, num_samples, 1) |
|
|
|
cap_lens = cap_lens.data.tolist() |
|
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True) |
|
|
|
gru_seq, gru_last = self.gru(emb, hidden) |
|
|
|
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1) |
|
|
|
return self.output_net(gru_last) |
|
|
|
|
|
class MotionEncoderBiGRUCo(nn.Module): |
|
def __init__(self, input_size, hidden_size, output_size, device): |
|
super(MotionEncoderBiGRUCo, self).__init__() |
|
self.device = device |
|
|
|
self.input_emb = nn.Linear(input_size, hidden_size) |
|
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True) |
|
self.output_net = nn.Sequential( |
|
nn.Linear(hidden_size*2, hidden_size), |
|
nn.LayerNorm(hidden_size), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
nn.Linear(hidden_size, output_size) |
|
) |
|
|
|
self.input_emb.apply(init_weight) |
|
self.output_net.apply(init_weight) |
|
self.hidden_size = hidden_size |
|
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True)) |
|
|
|
|
|
def forward(self, inputs, m_lens): |
|
num_samples = inputs.shape[0] |
|
|
|
input_embs = self.input_emb(inputs) |
|
hidden = self.hidden.repeat(1, num_samples, 1) |
|
|
|
cap_lens = m_lens.data.tolist() |
|
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True) |
|
|
|
gru_seq, gru_last = self.gru(emb, hidden) |
|
|
|
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1) |
|
|
|
return self.output_net(gru_last) |