|
from models.t2m_eval_modules import * |
|
from utils.word_vectorizer import POS_enumerator |
|
from os.path import join as pjoin |
|
|
|
def build_models(opt): |
|
movement_enc = MovementConvEncoder(opt.dim_pose-4, opt.dim_movement_enc_hidden, opt.dim_movement_latent) |
|
text_enc = TextEncoderBiGRUCo(word_size=opt.dim_word, |
|
pos_size=opt.dim_pos_ohot, |
|
hidden_size=opt.dim_text_hidden, |
|
output_size=opt.dim_coemb_hidden, |
|
device=opt.device) |
|
|
|
motion_enc = MotionEncoderBiGRUCo(input_size=opt.dim_movement_latent, |
|
hidden_size=opt.dim_motion_hidden, |
|
output_size=opt.dim_coemb_hidden, |
|
device=opt.device) |
|
|
|
checkpoint = torch.load(pjoin(opt.checkpoints_dir, opt.dataset_name, 'text_mot_match', 'model', 'finest.tar'), |
|
map_location=opt.device) |
|
movement_enc.load_state_dict(checkpoint['movement_encoder']) |
|
text_enc.load_state_dict(checkpoint['text_encoder']) |
|
motion_enc.load_state_dict(checkpoint['motion_encoder']) |
|
print('Loading Evaluation Model Wrapper (Epoch %d) Completed!!' % (checkpoint['epoch'])) |
|
return text_enc, motion_enc, movement_enc |
|
|
|
|
|
class EvaluatorModelWrapper(object): |
|
|
|
def __init__(self, opt): |
|
|
|
if opt.dataset_name == 't2m': |
|
opt.dim_pose = 263 |
|
elif opt.dataset_name == 'kit': |
|
opt.dim_pose = 251 |
|
else: |
|
raise KeyError('Dataset not Recognized!!!') |
|
|
|
opt.dim_word = 300 |
|
opt.max_motion_length = 196 |
|
opt.dim_pos_ohot = len(POS_enumerator) |
|
opt.dim_motion_hidden = 1024 |
|
opt.max_text_len = 20 |
|
opt.dim_text_hidden = 512 |
|
opt.dim_coemb_hidden = 512 |
|
|
|
|
|
|
|
self.text_encoder, self.motion_encoder, self.movement_encoder = build_models(opt) |
|
self.opt = opt |
|
self.device = opt.device |
|
|
|
self.text_encoder.to(opt.device) |
|
self.motion_encoder.to(opt.device) |
|
self.movement_encoder.to(opt.device) |
|
|
|
self.text_encoder.eval() |
|
self.motion_encoder.eval() |
|
self.movement_encoder.eval() |
|
|
|
|
|
def get_co_embeddings(self, word_embs, pos_ohot, cap_lens, motions, m_lens): |
|
with torch.no_grad(): |
|
word_embs = word_embs.detach().to(self.device).float() |
|
pos_ohot = pos_ohot.detach().to(self.device).float() |
|
motions = motions.detach().to(self.device).float() |
|
|
|
align_idx = np.argsort(m_lens.data.tolist())[::-1].copy() |
|
motions = motions[align_idx] |
|
m_lens = m_lens[align_idx] |
|
|
|
'''Movement Encoding''' |
|
movements = self.movement_encoder(motions[..., :-4]).detach() |
|
m_lens = m_lens // self.opt.unit_length |
|
motion_embedding = self.motion_encoder(movements, m_lens) |
|
|
|
'''Text Encoding''' |
|
text_embedding = self.text_encoder(word_embs, pos_ohot, cap_lens) |
|
text_embedding = text_embedding[align_idx] |
|
return text_embedding, motion_embedding |
|
|
|
|
|
def get_motion_embeddings(self, motions, m_lens): |
|
with torch.no_grad(): |
|
motions = motions.detach().to(self.device).float() |
|
|
|
align_idx = np.argsort(m_lens.data.tolist())[::-1].copy() |
|
motions = motions[align_idx] |
|
m_lens = m_lens[align_idx] |
|
|
|
'''Movement Encoding''' |
|
movements = self.movement_encoder(motions[..., :-4]).detach() |
|
m_lens = m_lens // self.opt.unit_length |
|
motion_embedding = self.motion_encoder(movements, m_lens) |
|
return motion_embedding |
|
|
|
|
|
|
|
def build_evaluators(opt): |
|
movement_enc = MovementConvEncoder(opt['dim_pose']-4, opt['dim_movement_enc_hidden'], opt['dim_movement_latent']) |
|
text_enc = TextEncoderBiGRUCo(word_size=opt['dim_word'], |
|
pos_size=opt['dim_pos_ohot'], |
|
hidden_size=opt['dim_text_hidden'], |
|
output_size=opt['dim_coemb_hidden'], |
|
device=opt['device']) |
|
|
|
motion_enc = MotionEncoderBiGRUCo(input_size=opt['dim_movement_latent'], |
|
hidden_size=opt['dim_motion_hidden'], |
|
output_size=opt['dim_coemb_hidden'], |
|
device=opt['device']) |
|
|
|
ckpt_dir = opt['dataset_name'] |
|
if opt['dataset_name'] == 'humanml': |
|
ckpt_dir = 't2m' |
|
|
|
checkpoint = torch.load(pjoin(opt['checkpoints_dir'], ckpt_dir, 'text_mot_match', 'model', 'finest.tar'), |
|
map_location=opt['device']) |
|
movement_enc.load_state_dict(checkpoint['movement_encoder']) |
|
text_enc.load_state_dict(checkpoint['text_encoder']) |
|
motion_enc.load_state_dict(checkpoint['motion_encoder']) |
|
print('Loading Evaluation Model Wrapper (Epoch %d) Completed!!' % (checkpoint['epoch'])) |
|
return text_enc, motion_enc, movement_enc |
|
|
|
|
|
class EvaluatorWrapper(object): |
|
|
|
def __init__(self, dataset_name, device): |
|
opt = { |
|
'dataset_name': dataset_name, |
|
'device': device, |
|
'dim_word': 300, |
|
'max_motion_length': 196, |
|
'dim_pos_ohot': len(POS_enumerator), |
|
'dim_motion_hidden': 1024, |
|
'max_text_len': 20, |
|
'dim_text_hidden': 512, |
|
'dim_coemb_hidden': 512, |
|
'dim_pose': 263 if dataset_name == 'humanml' else 251, |
|
'dim_movement_enc_hidden': 512, |
|
'dim_movement_latent': 512, |
|
'checkpoints_dir': './checkpoints', |
|
'unit_length': 4, |
|
} |
|
|
|
self.text_encoder, self.motion_encoder, self.movement_encoder = build_evaluators(opt) |
|
self.opt = opt |
|
self.device = opt['device'] |
|
|
|
self.text_encoder.to(opt['device']) |
|
self.motion_encoder.to(opt['device']) |
|
self.movement_encoder.to(opt['device']) |
|
|
|
self.text_encoder.eval() |
|
self.motion_encoder.eval() |
|
self.movement_encoder.eval() |
|
|
|
|
|
def get_co_embeddings(self, word_embs, pos_ohot, cap_lens, motions, m_lens): |
|
with torch.no_grad(): |
|
word_embs = word_embs.detach().to(self.device).float() |
|
pos_ohot = pos_ohot.detach().to(self.device).float() |
|
motions = motions.detach().to(self.device).float() |
|
|
|
align_idx = np.argsort(m_lens.data.tolist())[::-1].copy() |
|
motions = motions[align_idx] |
|
m_lens = m_lens[align_idx] |
|
|
|
'''Movement Encoding''' |
|
movements = self.movement_encoder(motions[..., :-4]).detach() |
|
m_lens = m_lens // self.opt['unit_length'] |
|
motion_embedding = self.motion_encoder(movements, m_lens) |
|
|
|
|
|
'''Text Encoding''' |
|
text_embedding = self.text_encoder(word_embs, pos_ohot, cap_lens) |
|
text_embedding = text_embedding[align_idx] |
|
return text_embedding, motion_embedding |
|
|
|
|
|
def get_motion_embeddings(self, motions, m_lens): |
|
with torch.no_grad(): |
|
motions = motions.detach().to(self.device).float() |
|
|
|
align_idx = np.argsort(m_lens.data.tolist())[::-1].copy() |
|
motions = motions[align_idx] |
|
m_lens = m_lens[align_idx] |
|
|
|
'''Movement Encoding''' |
|
movements = self.movement_encoder(motions[..., :-4]).detach() |
|
m_lens = m_lens // self.opt['unit_length'] |
|
motion_embedding = self.motion_encoder(movements, m_lens) |
|
return motion_embedding |