|
from data.t2m_dataset import Text2MotionDatasetEval, collate_fn |
|
from utils.word_vectorizer import WordVectorizer |
|
import numpy as np |
|
from os.path import join as pjoin |
|
from torch.utils.data import DataLoader |
|
from utils.get_opt import get_opt |
|
|
|
def get_dataset_motion_loader(opt_path, batch_size, fname, device): |
|
opt = get_opt(opt_path, device) |
|
|
|
|
|
if opt.dataset_name == 't2m' or opt.dataset_name == 'kit': |
|
print('Loading dataset %s ...' % opt.dataset_name) |
|
|
|
mean = np.load(pjoin(opt.meta_dir, 'mean.npy')) |
|
std = np.load(pjoin(opt.meta_dir, 'std.npy')) |
|
|
|
w_vectorizer = WordVectorizer('./glove', 'our_vab') |
|
split_file = pjoin(opt.data_root, '%s.txt'%fname) |
|
dataset = Text2MotionDatasetEval(opt, mean, std, split_file, w_vectorizer) |
|
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=4, drop_last=True, |
|
collate_fn=collate_fn, shuffle=True) |
|
else: |
|
raise KeyError('Dataset not Recognized !!') |
|
|
|
print('Ground Truth Dataset Loading Completed!!!') |
|
return dataloader, dataset |