MoMask-test / visualization /AnimationStructure.py
andrewatef's picture
Upload folder using huggingface_hub
823807d verified
raw
history blame
9.57 kB
import numpy as np
# import scipy.sparse as sparse
import visualization.Animation as Animation
""" Family Functions """
def joints(parents):
"""
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
joints : (J) ndarray
Array of joint indices
"""
return np.arange(len(parents), dtype=int)
def joints_list(parents):
"""
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
joints : [ndarray]
List of arrays of joint idices for
each joint
"""
return list(joints(parents)[:, np.newaxis])
def parents_list(parents):
"""
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
parents : [ndarray]
List of arrays of joint idices for
the parents of each joint
"""
return list(parents[:, np.newaxis])
def children_list(parents):
"""
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
children : [ndarray]
List of arrays of joint indices for
the children of each joint
"""
def joint_children(i):
return [j for j, p in enumerate(parents) if p == i]
return list(map(lambda j: np.array(joint_children(j)), joints(parents)))
def descendants_list(parents):
"""
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
descendants : [ndarray]
List of arrays of joint idices for
the descendants of each joint
"""
children = children_list(parents)
def joint_descendants(i):
return sum([joint_descendants(j) for j in children[i]], list(children[i]))
return list(map(lambda j: np.array(joint_descendants(j)), joints(parents)))
def ancestors_list(parents):
"""
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
ancestors : [ndarray]
List of arrays of joint idices for
the ancestors of each joint
"""
decendants = descendants_list(parents)
def joint_ancestors(i):
return [j for j in joints(parents) if i in decendants[j]]
return list(map(lambda j: np.array(joint_ancestors(j)), joints(parents)))
""" Mask Functions """
def mask(parents, filter):
"""
Constructs a Mask for a give filter
A mask is a (J, J) ndarray truth table for a given
condition over J joints. For example there
may be a mask specifying if a joint N is a
child of another joint M.
This could be constructed into a mask using
`m = mask(parents, children_list)` and the condition
of childhood tested using `m[N, M]`.
Parameters
----------
parents : (J) ndarray
parents array
filter : (J) ndarray -> [ndarray]
function that outputs a list of arrays
of joint indices for some condition
Returns
-------
mask : (N, N) ndarray
boolean truth table of given condition
"""
m = np.zeros((len(parents), len(parents))).astype(bool)
jnts = joints(parents)
fltr = filter(parents)
for i, f in enumerate(fltr): m[i, :] = np.any(jnts[:, np.newaxis] == f[np.newaxis, :], axis=1)
return m
def joints_mask(parents): return np.eye(len(parents)).astype(bool)
def children_mask(parents): return mask(parents, children_list)
def parents_mask(parents): return mask(parents, parents_list)
def descendants_mask(parents): return mask(parents, descendants_list)
def ancestors_mask(parents): return mask(parents, ancestors_list)
""" Search Functions """
def joint_chain_ascend(parents, start, end):
chain = []
while start != end:
chain.append(start)
start = parents[start]
chain.append(end)
return np.array(chain, dtype=int)
""" Constraints """
def constraints(anim, **kwargs):
"""
Constraint list for Animation
This constraint list can be used in the
VerletParticle solver to constrain
a animation global joint positions.
Parameters
----------
anim : Animation
Input animation
masses : (F, J) ndarray
Optional list of masses
for joints J across frames F
defaults to weighting by
vertical height
Returns
-------
constraints : [(int, int, (F, J) ndarray, (F, J) ndarray, (F, J) ndarray)]
A list of constraints in the format:
(Joint1, Joint2, Masses1, Masses2, Lengths)
"""
masses = kwargs.pop('masses', None)
children = children_list(anim.parents)
constraints = []
points_offsets = Animation.offsets_global(anim)
points = Animation.positions_global(anim)
if masses is None:
masses = 1.0 / (0.1 + np.absolute(points_offsets[:, 1]))
masses = masses[np.newaxis].repeat(len(anim), axis=0)
for j in range(anim.shape[1]):
""" Add constraints between all joints and their children """
for c0 in children[j]:
dists = np.sum((points[:, c0] - points[:, j]) ** 2.0, axis=1) ** 0.5
constraints.append((c0, j, masses[:, c0], masses[:, j], dists))
""" Add constraints between all children of joint """
for c1 in children[j]:
if c0 == c1: continue
dists = np.sum((points[:, c0] - points[:, c1]) ** 2.0, axis=1) ** 0.5
constraints.append((c0, c1, masses[:, c0], masses[:, c1], dists))
return constraints
""" Graph Functions """
def graph(anim):
"""
Generates a weighted adjacency matrix
using local joint distances along
the skeletal structure.
Joints which are not connected
are assigned the weight `0`.
Joints which actually have zero distance
between them, but are still connected, are
perturbed by some minimal amount.
The output of this routine can be used
with the `scipy.sparse.csgraph`
routines for graph analysis.
Parameters
----------
anim : Animation
input animation
Returns
-------
graph : (N, N) ndarray
weight adjacency matrix using
local distances along the
skeletal structure from joint
N to joint M. If joints are not
directly connected are assigned
the weight `0`.
"""
graph = np.zeros(anim.shape[1], anim.shape[1])
lengths = np.sum(anim.offsets ** 2.0, axis=1) ** 0.5 + 0.001
for i, p in enumerate(anim.parents):
if p == -1: continue
graph[i, p] = lengths[p]
graph[p, i] = lengths[p]
return graph
def distances(anim):
"""
Generates a distance matrix for
pairwise joint distances along
the skeletal structure
Parameters
----------
anim : Animation
input animation
Returns
-------
distances : (N, N) ndarray
array of pairwise distances
along skeletal structure
from some joint N to some
joint M
"""
distances = np.zeros((anim.shape[1], anim.shape[1]))
generated = distances.copy().astype(bool)
joint_lengths = np.sum(anim.offsets ** 2.0, axis=1) ** 0.5
joint_children = children_list(anim)
joint_parents = parents_list(anim)
def find_distance(distances, generated, prev, i, j):
""" If root, identity, or already generated, return """
if j == -1: return (0.0, True)
if j == i: return (0.0, True)
if generated[i, j]: return (distances[i, j], True)
""" Find best distances along parents and children """
par_dists = [(joint_lengths[j], find_distance(distances, generated, j, i, p)) for p in joint_parents[j] if
p != prev]
out_dists = [(joint_lengths[c], find_distance(distances, generated, j, i, c)) for c in joint_children[j] if
c != prev]
""" Check valid distance and not dead end """
par_dists = [a + d for (a, (d, f)) in par_dists if f]
out_dists = [a + d for (a, (d, f)) in out_dists if f]
""" All dead ends """
if (out_dists + par_dists) == []: return (0.0, False)
""" Get minimum path """
dist = min(out_dists + par_dists)
distances[i, j] = dist;
distances[j, i] = dist
generated[i, j] = True;
generated[j, i] = True
for i in range(anim.shape[1]):
for j in range(anim.shape[1]):
find_distance(distances, generated, -1, i, j)
return distances
def edges(parents):
"""
Animation structure edges
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
edges : (M, 2) ndarray
array of pairs where each
pair contains two indices of a joints
which corrisponds to an edge in the
joint structure going from parent to child.
"""
return np.array(list(zip(parents, joints(parents)))[1:])
def incidence(parents):
"""
Incidence Matrix
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
incidence : (N, M) ndarray
Matrix of N joint positions by
M edges which each entry is either
1 or -1 and multiplication by the
joint positions returns the an
array of vectors along each edge
of the structure
"""
es = edges(parents)
inc = np.zeros((len(parents) - 1, len(parents))).astype(np.int)
for i, e in enumerate(es):
inc[i, e[0]] = 1
inc[i, e[1]] = -1
return inc.T