import numpy as np from scipy import linalg import torch def calculate_mpjpe(gt_joints, pred_joints): """ gt_joints: num_poses x num_joints(22) x 3 pred_joints: num_poses x num_joints(22) x 3 (obtained from recover_from_ric()) """ assert gt_joints.shape == pred_joints.shape, f"GT shape: {gt_joints.shape}, pred shape: {pred_joints.shape}" # Align by root (pelvis) pelvis = gt_joints[:, [0]].mean(1) gt_joints = gt_joints - torch.unsqueeze(pelvis, dim=1) pelvis = pred_joints[:, [0]].mean(1) pred_joints = pred_joints - torch.unsqueeze(pelvis, dim=1) # Compute MPJPE mpjpe = torch.linalg.norm(pred_joints - gt_joints, dim=-1) # num_poses x num_joints=22 mpjpe_seq = mpjpe.mean(-1) # num_poses return mpjpe_seq # (X - X_train)*(X - X_train) = -2X*X_train + X*X + X_train*X_train def euclidean_distance_matrix(matrix1, matrix2): """ Params: -- matrix1: N1 x D -- matrix2: N2 x D Returns: -- dist: N1 x N2 dist[i, j] == distance(matrix1[i], matrix2[j]) """ assert matrix1.shape[1] == matrix2.shape[1] d1 = -2 * np.dot(matrix1, matrix2.T) # shape (num_test, num_train) d2 = np.sum(np.square(matrix1), axis=1, keepdims=True) # shape (num_test, 1) d3 = np.sum(np.square(matrix2), axis=1) # shape (num_train, ) dists = np.sqrt(d1 + d2 + d3) # broadcasting return dists def calculate_top_k(mat, top_k): size = mat.shape[0] gt_mat = np.expand_dims(np.arange(size), 1).repeat(size, 1) bool_mat = (mat == gt_mat) correct_vec = False top_k_list = [] for i in range(top_k): # print(correct_vec, bool_mat[:, i]) correct_vec = (correct_vec | bool_mat[:, i]) # print(correct_vec) top_k_list.append(correct_vec[:, None]) top_k_mat = np.concatenate(top_k_list, axis=1) return top_k_mat def calculate_R_precision(embedding1, embedding2, top_k, sum_all=False): dist_mat = euclidean_distance_matrix(embedding1, embedding2) argmax = np.argsort(dist_mat, axis=1) top_k_mat = calculate_top_k(argmax, top_k) if sum_all: return top_k_mat.sum(axis=0) else: return top_k_mat def calculate_matching_score(embedding1, embedding2, sum_all=False): assert len(embedding1.shape) == 2 assert embedding1.shape[0] == embedding2.shape[0] assert embedding1.shape[1] == embedding2.shape[1] dist = linalg.norm(embedding1 - embedding2, axis=1) if sum_all: return dist.sum(axis=0) else: return dist def calculate_activation_statistics(activations): """ Params: -- activation: num_samples x dim_feat Returns: -- mu: dim_feat -- sigma: dim_feat x dim_feat """ mu = np.mean(activations, axis=0) cov = np.cov(activations, rowvar=False) return mu, cov def calculate_diversity(activation, diversity_times): assert len(activation.shape) == 2 assert activation.shape[0] > diversity_times num_samples = activation.shape[0] first_indices = np.random.choice(num_samples, diversity_times, replace=False) second_indices = np.random.choice(num_samples, diversity_times, replace=False) dist = linalg.norm(activation[first_indices] - activation[second_indices], axis=1) return dist.mean() def calculate_multimodality(activation, multimodality_times): assert len(activation.shape) == 3 assert activation.shape[1] > multimodality_times num_per_sent = activation.shape[1] first_dices = np.random.choice(num_per_sent, multimodality_times, replace=False) second_dices = np.random.choice(num_per_sent, multimodality_times, replace=False) dist = linalg.norm(activation[:, first_dices] - activation[:, second_dices], axis=2) return dist.mean() def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): """Numpy implementation of the Frechet Distance. The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). Stable version by Dougal J. Sutherland. Params: -- mu1 : Numpy array containing the activations of a layer of the inception net (like returned by the function 'get_predictions') for generated samples. -- mu2 : The sample mean over activations, precalculated on an representative data set. -- sigma1: The covariance matrix over activations for generated samples. -- sigma2: The covariance matrix over activations, precalculated on an representative data set. Returns: -- : The Frechet Distance. """ mu1 = np.atleast_1d(mu1) mu2 = np.atleast_1d(mu2) sigma1 = np.atleast_2d(sigma1) sigma2 = np.atleast_2d(sigma2) assert mu1.shape == mu2.shape, \ 'Training and test mean vectors have different lengths' assert sigma1.shape == sigma2.shape, \ 'Training and test covariances have different dimensions' diff = mu1 - mu2 # Product might be almost singular covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) if not np.isfinite(covmean).all(): msg = ('fid calculation produces singular product; ' 'adding %s to diagonal of cov estimates') % eps print(msg) offset = np.eye(sigma1.shape[0]) * eps covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) # Numerical error might give slight imaginary component if np.iscomplexobj(covmean): if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): m = np.max(np.abs(covmean.imag)) raise ValueError('Imaginary component {}'.format(m)) covmean = covmean.real tr_covmean = np.trace(covmean) return (diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean)