import sys import os from os.path import join as pjoin import torch from models.vq.model import RVQVAE from options.vq_option import arg_parse from motion_loaders.dataset_motion_loader import get_dataset_motion_loader import utils.eval_t2m as eval_t2m from utils.get_opt import get_opt from models.t2m_eval_wrapper import EvaluatorModelWrapper import warnings warnings.filterwarnings('ignore') import numpy as np from utils.word_vectorizer import WordVectorizer def load_vq_model(vq_opt, which_epoch): # opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.vq_name, 'opt.txt') vq_model = RVQVAE(vq_opt, dim_pose, vq_opt.nb_code, vq_opt.code_dim, vq_opt.code_dim, vq_opt.down_t, vq_opt.stride_t, vq_opt.width, vq_opt.depth, vq_opt.dilation_growth_rate, vq_opt.vq_act, vq_opt.vq_norm) ckpt = torch.load(pjoin(vq_opt.checkpoints_dir, vq_opt.dataset_name, vq_opt.name, 'model', which_epoch), map_location='cpu') model_key = 'vq_model' if 'vq_model' in ckpt else 'net' vq_model.load_state_dict(ckpt[model_key]) vq_epoch = ckpt['ep'] if 'ep' in ckpt else -1 print(f'Loading VQ Model {vq_opt.name} Completed!, Epoch {vq_epoch}') return vq_model, vq_epoch if __name__ == "__main__": ##### ---- Exp dirs ---- ##### args = arg_parse(False) args.device = torch.device("cpu" if args.gpu_id == -1 else "cuda:" + str(args.gpu_id)) args.out_dir = pjoin(args.checkpoints_dir, args.dataset_name, args.name, 'eval') os.makedirs(args.out_dir, exist_ok=True) f = open(pjoin(args.out_dir, '%s.log'%args.ext), 'w') dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataset_name == 'kit' \ else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt' wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda')) eval_wrapper = EvaluatorModelWrapper(wrapper_opt) ##### ---- Dataloader ---- ##### args.nb_joints = 21 if args.dataset_name == 'kit' else 22 dim_pose = 251 if args.dataset_name == 'kit' else 263 eval_val_loader, _ = get_dataset_motion_loader(dataset_opt_path, 32, 'test', device=args.device) print(len(eval_val_loader)) ##### ---- Network ---- ##### vq_opt_path = pjoin(args.checkpoints_dir, args.dataset_name, args.name, 'opt.txt') vq_opt = get_opt(vq_opt_path, device=args.device) # net = load_vq_model() model_dir = pjoin(args.checkpoints_dir, args.dataset_name, args.name, 'model') for file in os.listdir(model_dir): # if not file.endswith('tar'): # continue # if not file.startswith('net_best_fid'): # continue if args.which_epoch != "all" and args.which_epoch not in file: continue print(file) net, ep = load_vq_model(vq_opt, file) net.eval() net.cuda() fid = [] div = [] top1 = [] top2 = [] top3 = [] matching = [] mae = [] repeat_time = 20 for i in range(repeat_time): best_fid, best_div, Rprecision, best_matching, l1_dist = \ eval_t2m.evaluation_vqvae_plus_mpjpe(eval_val_loader, net, i, eval_wrapper=eval_wrapper, num_joint=args.nb_joints) fid.append(best_fid) div.append(best_div) top1.append(Rprecision[0]) top2.append(Rprecision[1]) top3.append(Rprecision[2]) matching.append(best_matching) mae.append(l1_dist) fid = np.array(fid) div = np.array(div) top1 = np.array(top1) top2 = np.array(top2) top3 = np.array(top3) matching = np.array(matching) mae = np.array(mae) print(f'{file} final result, epoch {ep}') print(f'{file} final result, epoch {ep}', file=f, flush=True) msg_final = f"\tFID: {np.mean(fid):.3f}, conf. {np.std(fid)*1.96/np.sqrt(repeat_time):.3f}\n" \ f"\tDiversity: {np.mean(div):.3f}, conf. {np.std(div)*1.96/np.sqrt(repeat_time):.3f}\n" \ f"\tTOP1: {np.mean(top1):.3f}, conf. {np.std(top1)*1.96/np.sqrt(repeat_time):.3f}, TOP2. {np.mean(top2):.3f}, conf. {np.std(top2)*1.96/np.sqrt(repeat_time):.3f}, TOP3. {np.mean(top3):.3f}, conf. {np.std(top3)*1.96/np.sqrt(repeat_time):.3f}\n" \ f"\tMatching: {np.mean(matching):.3f}, conf. {np.std(matching)*1.96/np.sqrt(repeat_time):.3f}\n" \ f"\tMAE:{np.mean(mae):.3f}, conf.{np.std(mae)*1.96/np.sqrt(repeat_time):.3f}\n\n" # logger.info(msg_final) print(msg_final) print(msg_final, file=f, flush=True) f.close()