import argparse import os import torch class BaseOptions(): def __init__(self): self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) self.initialized = False def initialize(self): self.parser.add_argument('--name', type=str, default="t2m_nlayer8_nhead6_ld384_ff1024_cdp0.1_rvq6ns", help='Name of this trial') self.parser.add_argument('--vq_name', type=str, default="rvq_nq1_dc512_nc512", help='Name of the rvq model.') self.parser.add_argument("--gpu_id", type=int, default=0, help='GPU id') self.parser.add_argument('--dataset_name', type=str, default='t2m', help='Dataset Name, {t2m} for humanml3d, {kit} for kit-ml') self.parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here.') self.parser.add_argument('--latent_dim', type=int, default=384, help='Dimension of transformer latent.') self.parser.add_argument('--n_heads', type=int, default=6, help='Number of heads.') self.parser.add_argument('--n_layers', type=int, default=8, help='Number of attention layers.') self.parser.add_argument('--ff_size', type=int, default=1024, help='FF_Size') self.parser.add_argument('--dropout', type=float, default=0.2, help='Dropout ratio in transformer') self.parser.add_argument("--max_motion_length", type=int, default=196, help="Max length of motion") self.parser.add_argument("--unit_length", type=int, default=4, help="Downscale ratio of VQ") self.parser.add_argument('--force_mask', action="store_true", help='True: mask out conditions') self.initialized = True def parse(self): if not self.initialized: self.initialize() self.opt = self.parser.parse_args() self.opt.is_train = self.is_train if self.opt.gpu_id != -1: # self.opt.gpu_id = int(self.opt.gpu_id) torch.cuda.set_device(self.opt.gpu_id) args = vars(self.opt) print('------------ Options -------------') for k, v in sorted(args.items()): print('%s: %s' % (str(k), str(v))) print('-------------- End ----------------') if self.is_train: # save to the disk expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.dataset_name, self.opt.name) if not os.path.exists(expr_dir): os.makedirs(expr_dir) file_name = os.path.join(expr_dir, 'opt.txt') with open(file_name, 'wt') as opt_file: opt_file.write('------------ Options -------------\n') for k, v in sorted(args.items()): opt_file.write('%s: %s\n' % (str(k), str(v))) opt_file.write('-------------- End ----------------\n') return self.opt