andrewzhang505
commited on
Commit
•
84a6a5e
1
Parent(s):
744e253
Upload with huggingface_hub
Browse files- .summary/0/events.out.tfevents.1657162976.andrew-gpu +3 -0
- cfg.json +113 -0
- checkpoint_p0/best_000019072_9764864_reward_5662.000.pth +3 -0
- checkpoint_p0/checkpoint_000019440_9953280.pth +3 -0
- checkpoint_p0/checkpoint_000019488_9977856.pth +3 -0
- checkpoint_p0/checkpoint_000019536_10002432.pth +3 -0
- env_info_mujoco_ant +0 -0
- git.diff +328 -0
- sf_log.txt +0 -0
.summary/0/events.out.tfevents.1657162976.andrew-gpu
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b7024cdf292809b25d392d27b6be6f6f4cf1468349966d23d948704c79963dd
|
3 |
+
size 3511481
|
cfg.json
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"help": false,
|
3 |
+
"algo": "APPO",
|
4 |
+
"env": "mujoco_ant",
|
5 |
+
"experiment": "04_mujoco_all_envs_see_1111_env_mujoco_ant",
|
6 |
+
"train_dir": "./train_dir",
|
7 |
+
"experiments_root": "mujoco_all_envs/mujoco_all_envs_crl_4",
|
8 |
+
"device": "gpu",
|
9 |
+
"seed": 1111,
|
10 |
+
"num_policies": 1,
|
11 |
+
"async_rl": false,
|
12 |
+
"serial_mode": false,
|
13 |
+
"batched_sampling": false,
|
14 |
+
"num_batches_to_accumulate": 2,
|
15 |
+
"worker_num_splits": 2,
|
16 |
+
"policy_workers_per_policy": 1,
|
17 |
+
"max_policy_lag": 10000,
|
18 |
+
"num_workers": 8,
|
19 |
+
"num_envs_per_worker": 8,
|
20 |
+
"batch_size": 1024,
|
21 |
+
"num_batches_per_epoch": 4,
|
22 |
+
"num_epochs": 2,
|
23 |
+
"rollout": 64,
|
24 |
+
"recurrence": 1,
|
25 |
+
"shuffle_minibatches": false,
|
26 |
+
"gamma": 0.99,
|
27 |
+
"reward_scale": 1,
|
28 |
+
"reward_clip": 1000.0,
|
29 |
+
"value_bootstrap": false,
|
30 |
+
"normalize_returns": true,
|
31 |
+
"exploration_loss_coeff": 0.0,
|
32 |
+
"value_loss_coeff": 1.3,
|
33 |
+
"kl_loss_coeff": 0.1,
|
34 |
+
"exploration_loss": "entropy",
|
35 |
+
"gae_lambda": 0.95,
|
36 |
+
"ppo_clip_ratio": 0.2,
|
37 |
+
"ppo_clip_value": 1.0,
|
38 |
+
"with_vtrace": false,
|
39 |
+
"vtrace_rho": 1.0,
|
40 |
+
"vtrace_c": 1.0,
|
41 |
+
"optimizer": "adam",
|
42 |
+
"adam_eps": 1e-06,
|
43 |
+
"adam_beta1": 0.9,
|
44 |
+
"adam_beta2": 0.999,
|
45 |
+
"max_grad_norm": 3.5,
|
46 |
+
"learning_rate": 0.00295,
|
47 |
+
"lr_schedule": "linear_decay",
|
48 |
+
"lr_schedule_kl_threshold": 0.008,
|
49 |
+
"obs_subtract_mean": 0.0,
|
50 |
+
"obs_scale": 1.0,
|
51 |
+
"normalize_input": true,
|
52 |
+
"decorrelate_experience_max_seconds": 10,
|
53 |
+
"decorrelate_envs_on_one_worker": true,
|
54 |
+
"actor_worker_gpus": [],
|
55 |
+
"set_workers_cpu_affinity": true,
|
56 |
+
"force_envs_single_thread": true,
|
57 |
+
"default_niceness": 0,
|
58 |
+
"experiment_summaries_interval": 3,
|
59 |
+
"stats_avg": 100,
|
60 |
+
"train_for_env_steps": 10000000,
|
61 |
+
"train_for_seconds": 10000000000,
|
62 |
+
"save_every_sec": 15,
|
63 |
+
"keep_checkpoints": 3,
|
64 |
+
"load_checkpoint_kind": "latest",
|
65 |
+
"save_milestones_sec": -1,
|
66 |
+
"save_best_every_sec": 5,
|
67 |
+
"save_best_metric": "reward",
|
68 |
+
"save_best_after": 100000,
|
69 |
+
"benchmark": false,
|
70 |
+
"encoder_type": "mlp",
|
71 |
+
"encoder_subtype": "mlp_mujoco",
|
72 |
+
"encoder_custom": null,
|
73 |
+
"encoder_extra_fc_layers": 0,
|
74 |
+
"hidden_size": 64,
|
75 |
+
"nonlinearity": "tanh",
|
76 |
+
"policy_initialization": "torch_default",
|
77 |
+
"policy_init_gain": 1.0,
|
78 |
+
"actor_critic_share_weights": true,
|
79 |
+
"adaptive_stddev": false,
|
80 |
+
"initial_stddev": 1.0,
|
81 |
+
"use_rnn": false,
|
82 |
+
"rnn_type": "gru",
|
83 |
+
"rnn_num_layers": 1,
|
84 |
+
"env_gpu_actions": false,
|
85 |
+
"env_frameskip": 1,
|
86 |
+
"env_framestack": 4,
|
87 |
+
"pixel_format": "CHW",
|
88 |
+
"with_wandb": true,
|
89 |
+
"wandb_user": null,
|
90 |
+
"wandb_project": "sample_factory",
|
91 |
+
"wandb_group": null,
|
92 |
+
"wandb_job_type": "SF",
|
93 |
+
"wandb_tags": [
|
94 |
+
"mujoco",
|
95 |
+
"runner_crl_4"
|
96 |
+
],
|
97 |
+
"command_line": "--algo=APPO --with_wandb=True --wandb_tags mujoco runner_crl_4 --seed=1111 --env=mujoco_ant --experiment=04_mujoco_all_envs_see_1111_env_mujoco_ant --train_dir=./train_dir --experiments_root=mujoco_all_envs/mujoco_all_envs_crl_4",
|
98 |
+
"cli_args": {
|
99 |
+
"algo": "APPO",
|
100 |
+
"env": "mujoco_ant",
|
101 |
+
"experiment": "04_mujoco_all_envs_see_1111_env_mujoco_ant",
|
102 |
+
"train_dir": "./train_dir",
|
103 |
+
"experiments_root": "mujoco_all_envs/mujoco_all_envs_crl_4",
|
104 |
+
"seed": 1111,
|
105 |
+
"with_wandb": true,
|
106 |
+
"wandb_tags": [
|
107 |
+
"mujoco",
|
108 |
+
"runner_crl_4"
|
109 |
+
]
|
110 |
+
},
|
111 |
+
"git_hash": "4e69a02b57fff18dbbf96054866d0d759f70c5fa",
|
112 |
+
"git_repo_name": "https://github.com/andrewzhang505/sample-factory.git"
|
113 |
+
}
|
checkpoint_p0/best_000019072_9764864_reward_5662.000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74113794f2dbffc9d9b1f360b21044fa716b96c449a1d64d2ace49498513dbb5
|
3 |
+
size 89474
|
checkpoint_p0/checkpoint_000019440_9953280.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc4ef594dd0d76b923c0d486b68843386a767f29e7efa21e0c7e4e3720588ba3
|
3 |
+
size 89474
|
checkpoint_p0/checkpoint_000019488_9977856.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b0eb8009a55aca0f55e4a7466207e74da2f9342e07ec0b4b69bb3970370b429
|
3 |
+
size 89474
|
checkpoint_p0/checkpoint_000019536_10002432.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79926c513f96e8ef257fd695a58a5778b4fcf3aff9a165ee5599e71599dc4b38
|
3 |
+
size 89474
|
env_info_mujoco_ant
ADDED
Binary file (1.62 kB). View file
|
|
git.diff
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diff --git a/sample_factory/algo/learning/learner.py b/sample_factory/algo/learning/learner.py
|
2 |
+
index 178d2ab..20bb937 100644
|
3 |
+
--- a/sample_factory/algo/learning/learner.py
|
4 |
+
+++ b/sample_factory/algo/learning/learner.py
|
5 |
+
@@ -110,6 +110,20 @@ class KlAdaptiveSchedulerPerEpoch(KlAdaptiveScheduler):
|
6 |
+
def invoke_after_each_epoch(self):
|
7 |
+
return True
|
8 |
+
|
9 |
+
+class LinearDecayScheduler(LearningRateScheduler):
|
10 |
+
+ def __init__(self, cfg):
|
11 |
+
+ num_updates = cfg.train_for_env_steps // cfg.batch_size * cfg.num_epochs
|
12 |
+
+ self.linear_decay = LinearDecay([(0, cfg.learning_rate), (num_updates, 0)])
|
13 |
+
+ self.step = 0
|
14 |
+
+
|
15 |
+
+ def invoke_after_each_minibatch(self):
|
16 |
+
+ return True
|
17 |
+
+
|
18 |
+
+ def update(self, current_lr, recent_kls):
|
19 |
+
+ self.step += 1
|
20 |
+
+ lr = self.linear_decay.at(self.step)
|
21 |
+
+ return lr
|
22 |
+
+
|
23 |
+
|
24 |
+
def get_lr_scheduler(cfg) -> LearningRateScheduler:
|
25 |
+
if cfg.lr_schedule == "constant":
|
26 |
+
@@ -118,6 +132,8 @@ def get_lr_scheduler(cfg) -> LearningRateScheduler:
|
27 |
+
return KlAdaptiveSchedulerPerMinibatch(cfg)
|
28 |
+
elif cfg.lr_schedule == "kl_adaptive_epoch":
|
29 |
+
return KlAdaptiveSchedulerPerEpoch(cfg)
|
30 |
+
+ elif cfg.lr_schedule == "linear_decay":
|
31 |
+
+ return LinearDecayScheduler(cfg)
|
32 |
+
else:
|
33 |
+
raise RuntimeError(f"Unknown scheduler {cfg.lr_schedule}")
|
34 |
+
|
35 |
+
diff --git a/sample_factory/envs/mujoco/mujoco_params.py b/sample_factory/envs/mujoco/mujoco_params.py
|
36 |
+
index ef0b486..cb4b977 100644
|
37 |
+
--- a/sample_factory/envs/mujoco/mujoco_params.py
|
38 |
+
+++ b/sample_factory/envs/mujoco/mujoco_params.py
|
39 |
+
@@ -1,117 +1,155 @@
|
40 |
+
+# def mujoco_override_defaults(env, parser):
|
41 |
+
+# parser.set_defaults(
|
42 |
+
+# batched_sampling=False,
|
43 |
+
+# num_workers=8,
|
44 |
+
+# num_envs_per_worker=16,
|
45 |
+
+# worker_num_splits=2,
|
46 |
+
+# train_for_env_steps=1000000,
|
47 |
+
+# encoder_type="mlp",
|
48 |
+
+# encoder_subtype="mlp_mujoco",
|
49 |
+
+# hidden_size=64,
|
50 |
+
+# encoder_extra_fc_layers=0,
|
51 |
+
+# env_frameskip=1,
|
52 |
+
+# nonlinearity="tanh",
|
53 |
+
+# batch_size=64,
|
54 |
+
+# kl_loss_coeff=0.1,
|
55 |
+
+# use_rnn=False,
|
56 |
+
+# adaptive_stddev=False,
|
57 |
+
+# policy_initialization="torch_default",
|
58 |
+
+# reward_scale=0.01,
|
59 |
+
+# rollout=8,
|
60 |
+
+# max_grad_norm=0.0,
|
61 |
+
+# ppo_epochs=10,
|
62 |
+
+# num_batches_per_epoch=32,
|
63 |
+
+# ppo_clip_ratio=0.2,
|
64 |
+
+# value_loss_coeff=2.0,
|
65 |
+
+# exploration_loss_coeff=0.0,
|
66 |
+
+# learning_rate=3e-3,
|
67 |
+
+# lr_schedule="constant",
|
68 |
+
+# shuffle_minibatches=True,
|
69 |
+
+# gamma=0.99,
|
70 |
+
+# gae_lambda=0.95,
|
71 |
+
+# with_vtrace=False,
|
72 |
+
+# recurrence=1,
|
73 |
+
+# value_bootstrap=False,
|
74 |
+
+# normalize_input=True,
|
75 |
+
+# experiment_summaries_interval=3,
|
76 |
+
+# save_every_sec=15,
|
77 |
+
+# serial_mode=False,
|
78 |
+
+# async_rl=False,
|
79 |
+
+# )
|
80 |
+
+
|
81 |
+
+# # environment specific overrides
|
82 |
+
+# env_name = "_".join(env.split("_")[1:]).lower()
|
83 |
+
+
|
84 |
+
+# if env_name == "halfcheetah":
|
85 |
+
+# parser.set_defaults(
|
86 |
+
+# reward_scale=0.1,
|
87 |
+
+# learning_rate=3e-3,
|
88 |
+
+# lr_schedule="kl_adaptive_epoch",
|
89 |
+
+# lr_schedule_kl_threshold=3e-2,
|
90 |
+
+# normalize_input=False,
|
91 |
+
+# num_batches_per_epoch=1,
|
92 |
+
+# )
|
93 |
+
+# if env_name == "humanoid":
|
94 |
+
+# parser.set_defaults(
|
95 |
+
+# learning_rate=3e-4,
|
96 |
+
+# )
|
97 |
+
+# if env_name == "hopper":
|
98 |
+
+# parser.set_defaults(
|
99 |
+
+# reward_scale=0.1,
|
100 |
+
+# learning_rate=3e-3,
|
101 |
+
+# lr_schedule="kl_adaptive_epoch",
|
102 |
+
+# lr_schedule_kl_threshold=3e-2,
|
103 |
+
+# # normalize_input=False,
|
104 |
+
+# # num_batches_per_epoch=1,
|
105 |
+
+# # normalize_returns=True,
|
106 |
+
+# # hidden_size=128,
|
107 |
+
+# )
|
108 |
+
+# if env_name == "doublependulum":
|
109 |
+
+# parser.set_defaults(
|
110 |
+
+# reward_scale=0.01,
|
111 |
+
+# learning_rate=3e-3,
|
112 |
+
+# lr_schedule="kl_adaptive_epoch",
|
113 |
+
+# lr_schedule_kl_threshold=3e-2,
|
114 |
+
+# )
|
115 |
+
+# if env_name == "pendulum":
|
116 |
+
+# parser.set_defaults(
|
117 |
+
+# # reward_scale=0.01,
|
118 |
+
+# learning_rate=3e-4,
|
119 |
+
+# lr_schedule="kl_adaptive_epoch",
|
120 |
+
+# lr_schedule_kl_threshold=3e-3,
|
121 |
+
+# )
|
122 |
+
+# if env_name == "reacher":
|
123 |
+
+# parser.set_defaults(
|
124 |
+
+# reward_scale=0.1,
|
125 |
+
+# learning_rate=3e-3,
|
126 |
+
+# lr_schedule="kl_adaptive_epoch",
|
127 |
+
+# lr_schedule_kl_threshold=3e-2,
|
128 |
+
+# normalize_input=False,
|
129 |
+
+# num_batches_per_epoch=1,
|
130 |
+
+# )
|
131 |
+
+# if env_name == "swimmer":
|
132 |
+
+# parser.set_defaults(
|
133 |
+
+# reward_scale=1,
|
134 |
+
+# # learning_rate=3e-3,
|
135 |
+
+# # lr_schedule="kl_adaptive_epoch",
|
136 |
+
+# # lr_schedule_kl_threshold=3e-2,
|
137 |
+
+# # gamma=0.9995,
|
138 |
+
+# rollout=128,
|
139 |
+
+# batch_size=128,
|
140 |
+
+# )
|
141 |
+
+# if env_name == "walker":
|
142 |
+
+# parser.set_defaults(
|
143 |
+
+# reward_scale=0.1,
|
144 |
+
+# learning_rate=3e-3,
|
145 |
+
+# lr_schedule="kl_adaptive_epoch",
|
146 |
+
+# lr_schedule_kl_threshold=3e-2,
|
147 |
+
+# )
|
148 |
+
+
|
149 |
+
def mujoco_override_defaults(env, parser):
|
150 |
+
parser.set_defaults(
|
151 |
+
batched_sampling=False,
|
152 |
+
num_workers=8,
|
153 |
+
- num_envs_per_worker=16,
|
154 |
+
+ num_envs_per_worker=8,
|
155 |
+
worker_num_splits=2,
|
156 |
+
- train_for_env_steps=1000000,
|
157 |
+
+ train_for_env_steps=10000000,
|
158 |
+
encoder_type="mlp",
|
159 |
+
encoder_subtype="mlp_mujoco",
|
160 |
+
hidden_size=64,
|
161 |
+
encoder_extra_fc_layers=0,
|
162 |
+
env_frameskip=1,
|
163 |
+
nonlinearity="tanh",
|
164 |
+
- batch_size=64,
|
165 |
+
+ batch_size=1024,
|
166 |
+
kl_loss_coeff=0.1,
|
167 |
+
-
|
168 |
+
use_rnn=False,
|
169 |
+
adaptive_stddev=False,
|
170 |
+
policy_initialization="torch_default",
|
171 |
+
- reward_scale=0.01,
|
172 |
+
- rollout=8,
|
173 |
+
- max_grad_norm=0.0,
|
174 |
+
- ppo_epochs=10,
|
175 |
+
- num_batches_per_epoch=32,
|
176 |
+
+ reward_scale=1,
|
177 |
+
+ rollout=64,
|
178 |
+
+ max_grad_norm=3.5,
|
179 |
+
+ num_epochs=2,
|
180 |
+
+ num_batches_per_epoch=4,
|
181 |
+
ppo_clip_ratio=0.2,
|
182 |
+
- value_loss_coeff=2.0,
|
183 |
+
+ value_loss_coeff=1.3,
|
184 |
+
exploration_loss_coeff=0.0,
|
185 |
+
- learning_rate=3e-3,
|
186 |
+
- lr_schedule="constant",
|
187 |
+
- shuffle_minibatches=True,
|
188 |
+
+ learning_rate=0.00295,
|
189 |
+
+ lr_schedule="linear_decay",
|
190 |
+
+ shuffle_minibatches=False,
|
191 |
+
gamma=0.99,
|
192 |
+
gae_lambda=0.95,
|
193 |
+
with_vtrace=False,
|
194 |
+
recurrence=1,
|
195 |
+
value_bootstrap=False,
|
196 |
+
normalize_input=True,
|
197 |
+
+ normalize_returns=True,
|
198 |
+
experiment_summaries_interval=3,
|
199 |
+
save_every_sec=15,
|
200 |
+
-
|
201 |
+
serial_mode=False,
|
202 |
+
async_rl=False,
|
203 |
+
)
|
204 |
+
|
205 |
+
- # environment specific overrides
|
206 |
+
- env_name = "_".join(env.split("_")[1:]).lower()
|
207 |
+
-
|
208 |
+
- if env_name == "halfcheetah":
|
209 |
+
- parser.set_defaults(
|
210 |
+
- reward_scale=0.1,
|
211 |
+
- learning_rate=3e-3,
|
212 |
+
- lr_schedule="kl_adaptive_epoch",
|
213 |
+
- lr_schedule_kl_threshold=3e-2,
|
214 |
+
- normalize_input=False,
|
215 |
+
- num_batches_per_epoch=1,
|
216 |
+
- )
|
217 |
+
- if env_name == "humanoid":
|
218 |
+
- parser.set_defaults(
|
219 |
+
- learning_rate=3e-4,
|
220 |
+
- )
|
221 |
+
- if env_name == "hopper":
|
222 |
+
- parser.set_defaults(
|
223 |
+
- reward_scale=0.1,
|
224 |
+
- learning_rate=3e-3,
|
225 |
+
- lr_schedule="kl_adaptive_epoch",
|
226 |
+
- lr_schedule_kl_threshold=3e-2,
|
227 |
+
- # normalize_input=False,
|
228 |
+
- # num_batches_per_epoch=1,
|
229 |
+
- # normalize_returns=True,
|
230 |
+
- # hidden_size=128,
|
231 |
+
- )
|
232 |
+
- if env_name == "doublependulum":
|
233 |
+
- parser.set_defaults(
|
234 |
+
- reward_scale=0.01,
|
235 |
+
- learning_rate=3e-3,
|
236 |
+
- lr_schedule="kl_adaptive_epoch",
|
237 |
+
- lr_schedule_kl_threshold=3e-2,
|
238 |
+
- )
|
239 |
+
- if env_name == "pendulum":
|
240 |
+
- parser.set_defaults(
|
241 |
+
- # reward_scale=0.01,
|
242 |
+
- learning_rate=3e-4,
|
243 |
+
- lr_schedule="kl_adaptive_epoch",
|
244 |
+
- lr_schedule_kl_threshold=3e-3,
|
245 |
+
- )
|
246 |
+
- if env_name == "reacher":
|
247 |
+
- parser.set_defaults(
|
248 |
+
- reward_scale=0.1,
|
249 |
+
- learning_rate=3e-3,
|
250 |
+
- lr_schedule="kl_adaptive_epoch",
|
251 |
+
- lr_schedule_kl_threshold=3e-2,
|
252 |
+
- normalize_input=False,
|
253 |
+
- num_batches_per_epoch=1,
|
254 |
+
- )
|
255 |
+
- if env_name == "swimmer":
|
256 |
+
- parser.set_defaults(
|
257 |
+
- reward_scale=1,
|
258 |
+
- learning_rate=3e-4,
|
259 |
+
- lr_schedule="kl_adaptive_epoch",
|
260 |
+
- lr_schedule_kl_threshold=3e-3,
|
261 |
+
- # normalize_input=False,
|
262 |
+
- # num_batches_per_epoch=1,
|
263 |
+
- normalize_returns=True,
|
264 |
+
- hidden_size=128,
|
265 |
+
- )
|
266 |
+
- if env_name == "walker":
|
267 |
+
- parser.set_defaults(
|
268 |
+
- reward_scale=0.1,
|
269 |
+
- learning_rate=3e-3,
|
270 |
+
- lr_schedule="kl_adaptive_epoch",
|
271 |
+
- lr_schedule_kl_threshold=3e-2,
|
272 |
+
- # normalize_returns=True,
|
273 |
+
- # normalize_input=False,
|
274 |
+
- # num_batches_per_epoch=1,
|
275 |
+
- )
|
276 |
+
+
|
277 |
+
|
278 |
+
|
279 |
+
# noinspection PyUnusedLocal
|
280 |
+
diff --git a/sample_factory/model/model_utils.py b/sample_factory/model/model_utils.py
|
281 |
+
index df6c82c..d8226d8 100644
|
282 |
+
--- a/sample_factory/model/model_utils.py
|
283 |
+
+++ b/sample_factory/model/model_utils.py
|
284 |
+
@@ -276,7 +276,7 @@ class MlpEncoder(EncoderBase):
|
285 |
+
self.init_fc_blocks(fc_encoder_layer)
|
286 |
+
|
287 |
+
def forward(self, obs_dict):
|
288 |
+
- x = self.mlp_head(obs_dict['obs'].float())
|
289 |
+
+ x = self.mlp_head(obs_dict["obs"].float())
|
290 |
+
x = self.forward_fc_blocks(x)
|
291 |
+
return x
|
292 |
+
|
293 |
+
diff --git a/sample_factory/runner/runs/mujoco_all_envs.py b/sample_factory/runner/runs/mujoco_all_envs.py
|
294 |
+
index 3ac67ce..5cbaa1a 100644
|
295 |
+
--- a/sample_factory/runner/runs/mujoco_all_envs.py
|
296 |
+
+++ b/sample_factory/runner/runs/mujoco_all_envs.py
|
297 |
+
@@ -8,12 +8,12 @@ _params = ParamGrid(
|
298 |
+
[
|
299 |
+
"mujoco_ant",
|
300 |
+
"mujoco_halfcheetah",
|
301 |
+
- "mujoco_hopper",
|
302 |
+
+ # "mujoco_hopper",
|
303 |
+
"mujoco_humanoid",
|
304 |
+
- "mujoco_doublependulum",
|
305 |
+
- "mujoco_pendulum",
|
306 |
+
- "mujoco_reacher",
|
307 |
+
- "mujoco_swimmer",
|
308 |
+
+ # "mujoco_doublependulum",
|
309 |
+
+ # "mujoco_pendulum",
|
310 |
+
+ # "mujoco_reacher",
|
311 |
+
+ # "mujoco_swimmer",
|
312 |
+
"mujoco_walker",
|
313 |
+
],
|
314 |
+
),
|
315 |
+
@@ -23,11 +23,11 @@ _params = ParamGrid(
|
316 |
+
_experiments = [
|
317 |
+
Experiment(
|
318 |
+
"mujoco_all_envs",
|
319 |
+
- "python -m sample_factory_examples.mujoco_examples.train_mujoco --algo=APPO --with_wandb=True --wandb_tags mujoco runner_4",
|
320 |
+
+ "python -m sample_factory_examples.mujoco_examples.train_mujoco --algo=APPO --with_wandb=True --wandb_tags mujoco runner_crl_4",
|
321 |
+
_params.generate_params(randomize=False),
|
322 |
+
),
|
323 |
+
]
|
324 |
+
|
325 |
+
|
326 |
+
RUN_DESCRIPTION = RunDescription("mujoco_all_envs", experiments=_experiments)
|
327 |
+
-# python -m sample_factory.runner.run --run=mujoco_all_envs --runner=processes --max_parallel=8 --pause_between=1 --experiments_per_gpu=10000 --num_gpus=1 --experiment_suffix=4
|
328 |
+
+# python -m sample_factory.runner.run --run=mujoco_all_envs --runner=processes --max_parallel=4 --pause_between=1 --experiments_per_gpu=32 --num_gpus=1 --experiment_suffix=crl_3
|
sf_log.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|