File size: 13,659 Bytes
710b706 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0fa825a830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0fa825a8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0fa825a950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0fa825a9e0>", "_build": "<function ActorCriticPolicy._build at 0x7f0fa825aa70>", "forward": "<function ActorCriticPolicy.forward at 0x7f0fa825ab00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0fa825ab90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0fa825ac20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0fa825acb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0fa825ad40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0fa825add0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0fa825ae60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0fa8264300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684405617310292212, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAa1Oz5PVp4/cFdPPmlY6b7G3qk+ZPM+OwAAAAAAAAAAAL4PvZ/Tl7sI6Qw7u05yPMil1jxFaVC9AACAPwAAgD/NonQ8C5bSPat+5j3sT4++tdAnPfYjGLwAAAAAAAAAAM22IL78MJU//iHZvkw1AL+sI4++jx2BvgAAAAAAAAAAzT/KvBoMpj+i1Iq+QyQSv7flUrz6Y7W9AAAAAAAAAADN7EI6AtuwPzVnRjshHr6+6hZLPWKN/TwAAAAAAAAAADPbFL3Z2C8/7Y8KPQX2yr5IDCu9yiKLPQAAAAAAAAAAmk3lO4d9sz9jczU/auLEvg++BLyyZyS+AAAAAAAAAACAqKa9EnuIP9Jrcr3iggG/SjGjvc6sND0AAAAAAAAAAM1mnrzP6A8/DfuGvVwRzr6ETmy93/YkvQAAAAAAAAAAM2rZPCsuqD/FTpY+0jAcv26wZzy6FyU+AAAAAAAAAACA/lI9XeS4Py6IRz6jD4W+InAaPtq+Dj4AAAAAAAAAAE1AOr2kMTq7IkSlPG7xvjwinnK89T+iPQAAgD8AAIA/TdiKveOQhj+glBi+Q5jsvvLiDL6gMrC9AAAAAAAAAABA0c092fGWP4iLDT+GrTe/zFYFPVKpWz4AAAAAAAAAAJqZiTpfmQI+QwDwvIn0lr4jsjW9qwaCPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHF78DW9US+MAWyUS+KMAXSUR0CfQl++dsi0dX2UKGgGR0BxbhGKAJ9iaAdNDQFoCEdAn0LxceKba3V9lChoBkdAdA3SKm8/U2gHS+FoCEdAn0MJ8fFJhHV9lChoBkdAcPSf51vETGgHTQABaAhHQJ9DXmKZUkx1fZQoaAZHQHEnfJNj9XNoB0v4aAhHQJ9ErYPGyX51fZQoaAZHQHC2V49ovi9oB00bAWgIR0CfRPKNAC4jdX2UKGgGR0BxCgpWmxdIaAdL1mgIR0CfRYj+rELqdX2UKGgGR0BxfmQ7tAs1aAdL32gIR0CfRfCfpUxVdX2UKGgGR0Bx5iCwr1/UaAdL92gIR0CfRl8CPp6hdX2UKGgGR0ByJ2ipNsWPaAdL/WgIR0CfRrXVsk6cdX2UKGgGR0BzLTRNRFZxaAdL9mgIR0CfRsRbbDdhdX2UKGgGR0BzSjJfYzzmaAdL02gIR0CfSDCLuQZGdX2UKGgGR0Btjq9EkSmJaAdL7WgIR0CfSDCvovBadX2UKGgGR0Bx0RD4QBgeaAdNBQFoCEdAn0hEj1PFenV9lChoBkdAcz7Rg7YChmgHS+xoCEdAn0h2mk30gHV9lChoBkdAcWsg9Net0WgHS9JoCEdAn0kEyckMTnV9lChoBkdAcGWF9roGIWgHS91oCEdAn0lhFqi48XV9lChoBkdAcjpX2dupCWgHS/loCEdAn0qJKvmoznV9lChoBkdAclfcRDkU9WgHTSIBaAhHQJ9KvMnqmj11fZQoaAZHQHAm9zGPxQVoB0vdaAhHQJ9LCOPvKEF1fZQoaAZHQDo7S2H+IdloB03oA2gIR0CfS0OBUaQ4dX2UKGgGR0BtTEQ/X5FgaAdL/mgIR0CfTBV9Wp6ydX2UKGgGR0BwTBUVBUrDaAdL62gIR0CfTH1IiC8OdX2UKGgGR0By+0pobn5jaAdL32gIR0CfTJPo3aSLdX2UKGgGR0By2/aews5GaAdNAAFoCEdAn0ymeYlY2nV9lChoBkdAcngN/vv0AmgHS+toCEdAn00lSbYsd3V9lChoBkdAcKyEdvKlpGgHS/JoCEdAn00+JUHY6HV9lChoBkdAcR2mg8KXwGgHS9loCEdAn2BWMwUQCnV9lChoBkdAcdb5GBnSOWgHS95oCEdAn2BsyWRigHV9lChoBkdActUT8YQ8OmgHS+toCEdAn2DPD+BH1HV9lChoBkdAcc/WgezUqmgHS+NoCEdAn2F1twaR6nV9lChoBkdAcQ9DZlFtsWgHS9xoCEdAn2GtMPBi1HV9lChoBkdAcUQQ4S6DoWgHTQABaAhHQJ9hwM5OrQx1fZQoaAZHQHOc1nAZbY9oB0vYaAhHQJ9ivK/20zF1fZQoaAZHQHM1ZcophF5oB0vJaAhHQJ9jEOI68xt1fZQoaAZHQHFVWKEWZZ1oB0vdaAhHQJ9jhmukk8l1fZQoaAZHQG5yCiyprDZoB0vuaAhHQJ9jxvl2eQN1fZQoaAZHQG7JtQsPJ7toB0vcaAhHQJ9lrWbwz+F1fZQoaAZHQG3Xg9/z8P5oB0vwaAhHQJ9lsw+MZP51fZQoaAZHQHNXnAAQxvhoB00LAWgIR0CfZ6LK3d9EdX2UKGgGR0BzAeO1fE4vaAdNBAFoCEdAn2iUwvg3tXV9lChoBkdAcbZlt0mtyWgHTSwBaAhHQJ9ozRNRFZx1fZQoaAZHQHCDprULDyhoB0vvaAhHQJ9pAOG0u151fZQoaAZHQHBwBKg7HQ1oB0voaAhHQJ9pPmeUY9B1fZQoaAZHQHB/L9ZRsM1oB00aAWgIR0CfaUlRP421dX2UKGgGR0ByaEG8mKIjaAdL/2gIR0CfaX0xdpqRdX2UKGgGR0ByMOzt1IRRaAdL92gIR0Cfas+FlCkXdX2UKGgGR0BvUIUahpQDaAdL1GgIR0Cfaw+QlruZdX2UKGgGR0BzP1DD0lJIaAdNCAFoCEdAn2sa1XvH93V9lChoBkdAcqBRWLgn+mgHTRoBaAhHQJ9sAwDeTFF1fZQoaAZHQHQfOxnnMdNoB0voaAhHQJ9sQ/1QIld1fZQoaAZHQHIvbE9+w1RoB0voaAhHQJ9sgChew9t1fZQoaAZHQHDYPwI+nqFoB00IAWgIR0CfbJ1Vo6CEdX2UKGgGR0BwKoQGwA2iaAdL5mgIR0CfbaDZlFtsdX2UKGgGR0Btip+tr9EUaAdL52gIR0Cfbsy5I6KcdX2UKGgGR0BxXDPqs2ehaAdNIgFoCEdAn28GzKLbYnV9lChoBkdAcZPkZ75VO2gHS99oCEdAn28iemNzbXV9lChoBkdAcdPIatLcsWgHS+toCEdAn2+uKCQLeHV9lChoBkdAcgsHS4OMEWgHS+poCEdAn2/VclgMMXV9lChoBkdAc2VsRg7YCmgHS8hoCEdAn3BHLV4HHHV9lChoBkdAcQXp4bCJoGgHTRIBaAhHQJ9wjhBJI2B1fZQoaAZHQG/3rsrupjtoB00GAWgIR0CfcLWjoIOZdX2UKGgGR0BykrF1jiGWaAdL2GgIR0CfcLQTEit8dX2UKGgGR0ByDA85jpcHaAdNEgFoCEdAn3DPViF0xXV9lChoBkdAczCtcv/R3WgHS9VoCEdAn3EkPUaybHV9lChoBkdAcioj7yhBaGgHTQMBaAhHQJ9xbZBcAzZ1fZQoaAZHQHEDoKMNtqJoB0vqaAhHQJ9xvjHXEqF1fZQoaAZHQHGwPY8Md95oB0vqaAhHQJ9x9wAEMb51fZQoaAZHQHJxO8K5TZRoB00DAWgIR0CfcmLJjlPrdX2UKGgGR0BRR6jesPrfaAdLnmgIR0CfcrGqPwNLdX2UKGgGR0Byhcxh2GIsaAdL5GgIR0CfctBjFyaNdX2UKGgGR0A3w8rZrYXgaAdLuWgIR0Cfc+icG1QZdX2UKGgGR0By5MaWHDaXaAdL3WgIR0Cfc/8F6iTMdX2UKGgGR0BwuIkHD766aAdL32gIR0CfdUT/Q0GedX2UKGgGR0By2+zw+dK/aAdNIAFoCEdAn3V0ornTzHV9lChoBkdAc8C+u/1xsGgHS8FoCEdAn3XVl9SdfHV9lChoBkdAcxGPuG9HtmgHS/JoCEdAn3Y2RNh3JXV9lChoBkdAcbGN4qwyI2gHS+9oCEdAn3ZEth/iHnV9lChoBkdAcS6gSeyzHGgHTR0BaAhHQJ92SsYEW691fZQoaAZHQHG970Bfa6BoB0v6aAhHQJ92RcOby6N1fZQoaAZHQG/YORT0g8toB0vmaAhHQJ92asPrfLt1fZQoaAZHQHLqS2Yv38JoB0v+aAhHQJ92fwF1SwZ1fZQoaAZHQG8GQKBun/FoB0voaAhHQJ93A5GSZBt1fZQoaAZHQHOCQD3dsSFoB0vJaAhHQJ93d/x2B8R1fZQoaAZHQHJinyI55qxoB0v3aAhHQJ93kdCE6DJ1fZQoaAZHQHKKDoMa0hNoB0vhaAhHQJ93iRW912d1fZQoaAZHQHARxew9q1xoB0vtaAhHQJ94FXp4bCJ1fZQoaAZHQG+Hs41gpjNoB0vXaAhHQJ941nBciW51fZQoaAZHQHD/2S+xnnNoB00AAWgIR0CfeeHVf/m1dX2UKGgGR0BvsZFEy+HraAdL3mgIR0CfennEl3QldX2UKGgGR0BzKOvmozeoaAdL7mgIR0CferKUVzp5dX2UKGgGR0B0Gq7Dl5nlaAdLx2gIR0Cfeu6LwWnCdX2UKGgGR0BxASOmzjWDaAdL5WgIR0Cfe27JnxrjdX2UKGgGR0Bxc4smOU+taAdL9WgIR0Cfe25YYBNmdX2UKGgGR0BzH/kCFK02aAdL7GgIR0Cfe6K0lZ5idX2UKGgGR0BUvFCCz1K5aAdLk2gIR0Cfe50K7ZnMdX2UKGgGR0Bwl1iF0xM4aAdL7WgIR0Cfe86eGwiadX2UKGgGR0BwDxz6rNnoaAdL/2gIR0CffAKqXF98dX2UKGgGR0BvgwvHtF8YaAdL/WgIR0CffAL7oB7vdX2UKGgGR0BtjMByS3b3aAdL32gIR0CffCpLmITHdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |