1M steps
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +18 -18
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 282.36 +/- 14.39
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f45eacda4d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45eacda560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45eacda5f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45eacda680>", "_build": "<function ActorCriticPolicy._build at 0x7f45eacda710>", "forward": "<function ActorCriticPolicy.forward at 0x7f45eacda7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45eacda830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f45eacda8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45eacda950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45eacda9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45eacdaa70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f45ead20b10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651941927.8815582, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADc/LuPxjq6BlKpOk0uGLaVNys5nznEuQAAgD8AAIA/GjdHPRREgbqIwny7hxOAOLgQpjp3UAw6AACAPwAAgD8AqLk9KeAJugh4kLtKvZk4MDjKOnzuLTkAAIA/AACAP1rPmT1SuJq3lrz4N2Yeqq9MyR478goWtwAAgD8AAIA/5vCBPVwrKboN7RE8yUqvNg3LULl+lao1AACAPwAAgD8A6pY8UgCAuWWMhLq+8wS2h5heOpUmnjkAAIA/AACAP8a3WT7u24o+i5m2vU6Ypr4Uhh89J6OJvAAAAAAAAAAA5t0KPVKu47uydCa88vyaPIT1Rb2L3oE9AACAPwAAgD8AFMm7e5CFuu66M7gxqKWzn3AHOxPITTcAAIA/AACAP5qluD1cKT28pTPRu5ZMtDyUn6W95oSSPQAAgD8AAAAAQLqDvVJw8bk9l4Y6gWKpNWcq0Tqe2525AACAPwAAgD8zyvw89tw1uoIKGrpkmQ21Z7VIum43NjkAAIA/AACAPwDzqTzsyZW5wIhrOy1I5TbECMG6KGKIugAAgD8AAIA/muO7vezJwrk6m1s8w3K3NN24vLqkc5YzAACAPwAAgD/NtC08hfvWudN9U7oK/lO290JsO9ZMdjkAAIA/AACAP41qrj0UirO6SzLlOxtyTjnUsCA7GdCBugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0v2cgvxnY0CUhpRSlIwBbJRN6AOMAXSUR0CeeWJwKjSHdX2UKGgGaAloD0MISWdg5GWYYkCUhpRSlGgVTegDaBZHQJ6BYYLsrup1fZQoaAZoCWgPQwj3rkFfertmQJSGlFKUaBVN6ANoFkdAnoUXVkMCtHV9lChoBmgJaA9DCDf6mA8I1GFAlIaUUpRoFU3oA2gWR0CejKvlU6xPdX2UKGgGaAloD0MIoWXdPxYhYECUhpRSlGgVTegDaBZHQJ6RvYTTOPh1fZQoaAZoCWgPQwiyLJj4I0dgQJSGlFKUaBVN6ANoFkdAnpHnoX9BKXV9lChoBmgJaA9DCJDaxMl9n2JAlIaUUpRoFU3oA2gWR0Cek9R2r4nGdX2UKGgGaAloD0MIS1mGONauZUCUhpRSlGgVTegDaBZHQJ6aBbMX7+F1fZQoaAZoCWgPQwibq+Y5IrFjQJSGlFKUaBVN6ANoFkdAnqC5lWfbsXV9lChoBmgJaA9DCBlW8UbmP2VAlIaUUpRoFU3oA2gWR0Ce+8mzByjpdX2UKGgGaAloD0MIOj3vxoLkZECUhpRSlGgVTegDaBZHQJ8HbzqbBoF1fZQoaAZoCWgPQwhZhc0AF2NkQJSGlFKUaBVN6ANoFkdAnweHd0q6OHV9lChoBmgJaA9DCAsm/ijqW2BAlIaUUpRoFU3oA2gWR0CfCd6yjYZmdX2UKGgGaAloD0MIh8Woa+29NUCUhpRSlGgVS7poFkdAnwoU4rBj4HV9lChoBmgJaA9DCFWFBmLZmkxAlIaUUpRoFUusaBZHQJ8Txjx0+1V1fZQoaAZoCWgPQwiVYHE484NIQJSGlFKUaBVLm2gWR0CfFR8gpz91dX2UKGgGaAloD0MIpFUt6SjYZECUhpRSlGgVTegDaBZHQJ8WT4EfT1F1fZQoaAZoCWgPQwh+q3XicoxlQJSGlFKUaBVN6ANoFkdAnxjOO4oZynV9lChoBmgJaA9DCNfc0f/yN2JAlIaUUpRoFU3oA2gWR0CfGPVtGd7OdX2UKGgGaAloD0MIs874vrgzZUCUhpRSlGgVTegDaBZHQJ8Z8L8aXKN1fZQoaAZoCWgPQwjRevgy0UxkQJSGlFKUaBVN6ANoFkdAnyC0hRqGlHV9lChoBmgJaA9DCHbexmbHc2JAlIaUUpRoFU3oA2gWR0CfI/4FA3UAdX2UKGgGaAloD0MIB5eOOc+EaECUhpRSlGgVTegDaBZHQJ8q5JqZc9p1fZQoaAZoCWgPQwioxeBh2tcFQJSGlFKUaBVLv2gWR0CfLbu8brC4dX2UKGgGaAloD0MIRSxi2OEqZkCUhpRSlGgVTegDaBZHQJ8vwPRRdhR1fZQoaAZoCWgPQwix4emVMp5jQJSGlFKUaBVN6ANoFkdAny/mzjWCmXV9lChoBmgJaA9DCLqhKTt93GNAlIaUUpRoFU3oA2gWR0CfMa4oZydXdX2UKGgGaAloD0MII74Ts14oYkCUhpRSlGgVTegDaBZHQJ83n3ta6jF1fZQoaAZoCWgPQwiRfvs6cL1kQJSGlFKUaBVN6ANoFkdAnz3PcvduYXV9lChoBmgJaA9DCJwVURN9oV1AlIaUUpRoFU3oA2gWR0CfpK5oXbdrdX2UKGgGaAloD0MIFajF4GGsakCUhpRSlGgVTegDaBZHQJ+nW4YrJ8x1fZQoaAZoCWgPQwimY84z9pVeQJSGlFKUaBVN6ANoFkdAn7KEcKgIyHV9lChoBmgJaA9DCL5KPnaXrWFAlIaUUpRoFU3oA2gWR0Cfs+gmJFb3dX2UKGgGaAloD0MIehhanZx2YkCUhpRSlGgVTegDaBZHQJ+1Eb70nPV1fZQoaAZoCWgPQwjrc7UVe7VkQJSGlFKUaBVN6ANoFkdAn7djER8MNXV9lChoBmgJaA9DCO4/Mh26x2JAlIaUUpRoFU3oA2gWR0Cft4hWo3rEdX2UKGgGaAloD0MIJ8Eb0qg9ZUCUhpRSlGgVTegDaBZHQJ+4Y9+w1SB1fZQoaAZoCWgPQwgBpgwc0PRNQJSGlFKUaBVLnGgWR0CfwhaP0Zm7dX2UKGgGaAloD0MIByXMtP1LZECUhpRSlGgVTegDaBZHQJ/CgzoEB8x1fZQoaAZoCWgPQwhgzJasCphiQJSGlFKUaBVN6ANoFkdAn8kvzJ6ppHV9lChoBmgJaA9DCPIHA8+9vmNAlIaUUpRoFU3oA2gWR0Cfy+SEUTL4dX2UKGgGaAloD0MIcHuCxPbfYUCUhpRSlGgVTegDaBZHQJ/NtuivgWJ1fZQoaAZoCWgPQwj0+L1Nf5liQJSGlFKUaBVN6ANoFkdAn83YrFwT/XV9lChoBmgJaA9DCAhXQKGedWVAlIaUUpRoFU3oA2gWR0Cfz3GdqcmTdX2UKGgGaAloD0MIZylZTsJZYECUhpRSlGgVTegDaBZHQJ/UwVXV9Wp1fZQoaAZoCWgPQwi5VRADXelCQJSGlFKUaBVLvmgWR0Cf19jghr31dX2UKGgGaAloD0MIXW+bqZCyYkCUhpRSlGgVTegDaBZHQJ/ab1oQFs51fZQoaAZoCWgPQwj+1HjpptJkQJSGlFKUaBVN6ANoFkdAoB+1vl2eQXV9lChoBmgJaA9DCKNcGr/wvGRAlIaUUpRoFU3oA2gWR0CgIPRjriVCdX2UKGgGaAloD0MIFEIHXUJiYkCUhpRSlGgVTegDaBZHQKAmVf642CN1fZQoaAZoCWgPQwi7mGa6V9FlQJSGlFKUaBVN6ANoFkdAoCcBFd9lVnV9lChoBmgJaA9DCA8mxccnXGlAlIaUUpRoFU3oA2gWR0CgJ5TI3irDdX2UKGgGaAloD0MIVcGopE6aYUCUhpRSlGgVTegDaBZHQKAoyNFz+3p1fZQoaAZoCWgPQwg8a7ddaLZmQJSGlFKUaBVN6ANoFkdAoCjao4uK43V9lChoBmgJaA9DCJYgI6BCa2RAlIaUUpRoFU3oA2gWR0CgLpMKkVN6dX2UKGgGaAloD0MIiSXl7vP9YkCUhpRSlGgVTegDaBZHQKAuyCzTnaF1fZQoaAZoCWgPQwhPBHEezthnQJSGlFKUaBVN6ANoFkdAoDJAZCOWB3V9lChoBmgJaA9DCHlcVIsI7GNAlIaUUpRoFU3oA2gWR0CgNH8PFvQ4dX2UKGgGaAloD0MIVPzfEZUxZkCUhpRSlGgVTegDaBZHQKA0lOP/7zl1fZQoaAZoCWgPQwgt7dRc7jtlQJSGlFKUaBVN6ANoFkdAoDVq08eS0XV9lChoBmgJaA9DCFHYRdEDSGJAlIaUUpRoFU3oA2gWR0CgOFc580DVdX2UKGgGaAloD0MIBg39E1ykZUCUhpRSlGgVTegDaBZHQKA5/Cw8nu11fZQoaAZoCWgPQwhHWb+ZmG5OQJSGlFKUaBVLxWgWR0CgOzb0WdmQdX2UKGgGaAloD0MIU67wLpc9Y0CUhpRSlGgVTegDaBZHQKA7UmtQsPJ1fZQoaAZoCWgPQwhMcOoDyd1jQJSGlFKUaBVN6ANoFkdAoGzj2exwAHV9lChoBmgJaA9DCOW2fY/6dmhAlIaUUpRoFU3oA2gWR0Cgbhf7zkIYdX2UKGgGaAloD0MIvVKWIY5wYUCUhpRSlGgVTegDaBZHQKBy9655JK91fZQoaAZoCWgPQwjmsPuO4fNOQJSGlFKUaBVLuWgWR0Cgc19onKGMdX2UKGgGaAloD0MIwf7r3LQbZUCUhpRSlGgVTegDaBZHQKBzlqnFYMh1fZQoaAZoCWgPQwhig4WTtMpiQJSGlFKUaBVN6ANoFkdAoHQh+vyLAHV9lChoBmgJaA9DCNJwytz8uGJAlIaUUpRoFU3oA2gWR0CgdTFtKqXGdX2UKGgGaAloD0MI/U/+7h0+ZUCUhpRSlGgVTegDaBZHQKB1QOfdykt1fZQoaAZoCWgPQwiOBvAWyDFiQJSGlFKUaBVN6ANoFkdAoHqkD6nBL3V9lChoBmgJaA9DCCRgdHnzvmVAlIaUUpRoFU3oA2gWR0CgetaCL/CJdX2UKGgGaAloD0MIPiMRGkE+Z0CUhpRSlGgVTegDaBZHQKB+RuIAOrh1fZQoaAZoCWgPQwjjiSDOwxtlQJSGlFKUaBVN6ANoFkdAoICJ1gYxcnV9lChoBmgJaA9DCDC7Jw8Lc0hAlIaUUpRoFUvBaBZHQKCBN7kXDWN1fZQoaAZoCWgPQwimme51UsBhQJSGlFKUaBVN6ANoFkdAoIF8ZgogFHV9lChoBmgJaA9DCH6K48ArqmNAlIaUUpRoFU3oA2gWR0CghFw9ic5KdX2UKGgGaAloD0MIdeYeEr5oZUCUhpRSlGgVTegDaBZHQKCF660Y0l91fZQoaAZoCWgPQwiSzsDIS2VnQJSGlFKUaBVN6ANoFkdAoIcYLZzxPXV9lChoBmgJaA9DCNswCoLHDWhAlIaUUpRoFU3oA2gWR0CghzPaL4vfdX2UKGgGaAloD0MIvHfUmBADTkCUhpRSlGgVS7loFkdAoLcKJhvzfHV9lChoBmgJaA9DCH+hR4weMGVAlIaUUpRoFU3oA2gWR0CguV9jwx33dX2UKGgGaAloD0MIuaZAZmeLXkCUhpRSlGgVTegDaBZHQKC+luCwr2B1fZQoaAZoCWgPQwhK8IY0KnlhQJSGlFKUaBVN6ANoFkdAoL8HaFmFrXV9lChoBmgJaA9DCNFcp5EWt2lAlIaUUpRoFU3oA2gWR0Cgvz8c2itadX2UKGgGaAloD0MIvOtsyD9SXkCUhpRSlGgVTegDaBZHQKC/0rLhaTx1fZQoaAZoCWgPQwgzTkNUYblnQJSGlFKUaBVN6ANoFkdAoMDyBwuM/HV9lChoBmgJaA9DCHpsy4Az3mVAlIaUUpRoFU3oA2gWR0CgwQOmzjWDdX2UKGgGaAloD0MI+1dWmpTIRkCUhpRSlGgVS5RoFkdAoMXUQCjk/HV9lChoBmgJaA9DCGt/Z3t0G2RAlIaUUpRoFU3oA2gWR0Cgxu0Ltu1ndX2UKGgGaAloD0MIsWoQ5nZSZUCUhpRSlGgVTegDaBZHQKDKzLV4HHF1fZQoaAZoCWgPQwjEIRtIFwNIQJSGlFKUaBVLmmgWR0Cgy7KTSsr/dX2UKGgGaAloD0MIVyWRfZDcZUCUhpRSlGgVTegDaBZHQKDNYohIOH51fZQoaAZoCWgPQwhS7j7Hx7FjQJSGlFKUaBVN6ANoFkdAoM4r3wkPc3V9lChoBmgJaA9DCIYeMXruRmJAlIaUUpRoFU3oA2gWR0CgznaE8JUpdX2UKGgGaAloD0MIXwoPml1PZECUhpRSlGgVTegDaBZHQKDRhlyzXz11fZQoaAZoCWgPQwjdeHdkLCpkQJSGlFKUaBVN6ANoFkdAoNMrebd8A3V9lChoBmgJaA9DCIf4hy09wGJAlIaUUpRoFU3oA2gWR0Cg1Htzr/sFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8ca75dd290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8ca75dd320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8ca75dd3b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8ca75dd440>", "_build": "<function ActorCriticPolicy._build at 0x7f8ca75dd4d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8ca75dd560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8ca75dd5f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8ca75dd680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8ca75dd710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8ca75dd7a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8ca75dd830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8ca7623b70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651949822.8632696, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAIvgr4Q3Ck/uL/XvNddDb+z7sC+0gg3PgAAAAAAAAAAzaUIvWnaVrxu4Aa99fUGvSPSVD3oJDq+AACAPwAAgD8AGPk8vjKQPWhU9b3+PnS+gMhCvUpjgr0AAAAAAAAAAGYEZjwKJ1a5sQepPecL2bH2Lwy6+y/4swAAgD8AAIA/zX+6vOm4MD3NEoY8rH6Vvt2AmrzSiR68AAAAAAAAAADNfck8Ic2evDg7nL7TJky9b1TNPfruyj4AAIA/AACAPzNTS7oFBpK7PqUAvSJjbTvDAdo8HiZpvAAAgD8AAIA/85yGPuLnHD+N21q+1/vWvruXsz7EV4K+AAAAAAAAAABmXbw9vIsGPrad/L5i77C+NFGCvl1ZLr4AAAAAAAAAAHOR4D1fFIs/ANy5PvO8DL9bJTA+pqFOPgAAAAAAAAAAsylEvRLnzTxrC14+dOl6vgiSez0nYiS9AAAAAAAAAADbooy+ojqSP3Oe5r6d5x6/10XZvsoeD70AAAAAAAAAAJpK1Lyu+Ym6kiyZt22AjrL+K+y5qCGyNgAAgD8AAIA/5iRhPQTjkD7H3Ry+vRSxvv4Rhb0y+e28AAAAAAAAAAAzsn+9jYoePtDUAz1pbda+hws2vBiwID0AAAAAAAAAAM2sxDyPXxG86c+zvVNa4DzaH1Y9+i7evQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2uTwSadbbkCUhpRSlIwBbJRL64wBdJRHQKFTNUAksz51fZQoaAZoCWgPQwha8nhaPihxQJSGlFKUaBVL5GgWR0ChUz3SSeRQdX2UKGgGaAloD0MIWOGWj6Q8bUCUhpRSlGgVS9ZoFkdAoVN5ztCzC3V9lChoBmgJaA9DCMEdqFPeCnNAlIaUUpRoFU3CAWgWR0ChU6mAbyYpdX2UKGgGaAloD0MIlwLS/ofFbUCUhpRSlGgVS9poFkdAoVP/JNj9XXV9lChoBmgJaA9DCFEzpIqiiXBAlIaUUpRoFUveaBZHQKFU0OH31z11fZQoaAZoCWgPQwjg10gSxCNwQJSGlFKUaBVL2WgWR0ChVNmkvboKdX2UKGgGaAloD0MIGJP+XkrDcUCUhpRSlGgVS8xoFkdAoVT5r+Hae3V9lChoBmgJaA9DCLCQuTKooXJAlIaUUpRoFUvlaBZHQKFVKcNpdrx1fZQoaAZoCWgPQwg1YJD0aZ5wQJSGlFKUaBVL0mgWR0ChVTOhsZYQdX2UKGgGaAloD0MIbF9AL5zjcECUhpRSlGgVS+poFkdAoVVEGC7K73V9lChoBmgJaA9DCNv4E5WNG3BAlIaUUpRoFUvPaBZHQKFVVQ40dil1fZQoaAZoCWgPQwjvrN12Ib1tQJSGlFKUaBVL0WgWR0ChVWEfT1CgdX2UKGgGaAloD0MI4lrtYS9BcECUhpRSlGgVS+BoFkdAoVWEcXFcZHV9lChoBmgJaA9DCEFmZ9F7PHNAlIaUUpRoFUvjaBZHQKFWe5wwTM91fZQoaAZoCWgPQwhNMnIW9gZwQJSGlFKUaBVL0mgWR0ChVqPRZ2ZBdX2UKGgGaAloD0MI6USCqSaQc0CUhpRSlGgVTTkBaBZHQKFWujXWe6J1fZQoaAZoCWgPQwhC0TyABRx0QJSGlFKUaBVL1WgWR0ChVrutwJgLdX2UKGgGaAloD0MIEHo2q34CcECUhpRSlGgVS85oFkdAoVbaAnUlRnV9lChoBmgJaA9DCNk/TwMGL21AlIaUUpRoFUvUaBZHQKFXHnHNorZ1fZQoaAZoCWgPQwjz5nCtdmFvQJSGlFKUaBVLymgWR0ChV0odU83ddX2UKGgGaAloD0MIQWZn0bvBckCUhpRSlGgVS8toFkdAoVgNXxOLznV9lChoBmgJaA9DCPuxSX5E1G5AlIaUUpRoFUvFaBZHQKFYTqs2ehB1fZQoaAZoCWgPQwh9zt2uF4pvQJSGlFKUaBVL22gWR0ChWFhfBvaUdX2UKGgGaAloD0MIa5p3nKLmcUCUhpRSlGgVS9poFkdAoVhxplBhQXV9lChoBmgJaA9DCH1AoDMpiHFAlIaUUpRoFUvLaBZHQKFYiAFPi1l1fZQoaAZoCWgPQwjKUuv9xmhzQJSGlFKUaBVLzmgWR0Chfs20Z3s5dX2UKGgGaAloD0MIDhDM0aMicUCUhpRSlGgVS95oFkdAoX7YkE9t/HV9lChoBmgJaA9DCHicoiP5LXJAlIaUUpRoFUvnaBZHQKF/ERnvlU91fZQoaAZoCWgPQwieCrjn+UhxQJSGlFKUaBVL1WgWR0Chfw4jSofkdX2UKGgGaAloD0MIv3yyYrhcb0CUhpRSlGgVS9hoFkdAoYAPgUDdQHV9lChoBmgJaA9DCAVvSKMC4W9AlIaUUpRoFUvOaBZHQKGAII+GGmF1fZQoaAZoCWgPQwhIbk26rU1wQJSGlFKUaBVLzWgWR0ChgD5iExqPdX2UKGgGaAloD0MI4zREFX4ybkCUhpRSlGgVS9poFkdAoYBUVHnU2HV9lChoBmgJaA9DCNKpK5/lgHFAlIaUUpRoFUvqaBZHQKGAg7ROUMZ1fZQoaAZoCWgPQwjH8q56gBNwQJSGlFKUaBVL3WgWR0ChgM3c580DdX2UKGgGaAloD0MIqRd8mlM2cUCUhpRSlGgVS9ZoFkdAoYDg7Njbz3V9lChoBmgJaA9DCHMs76qHh3BAlIaUUpRoFUvEaBZHQKGBlof0Vah1fZQoaAZoCWgPQwgapOAp5O9yQJSGlFKUaBVL12gWR0ChgaeXqqwRdX2UKGgGaAloD0MIL8N/ukGGcUCUhpRSlGgVS9toFkdAoYIEl7dBSnV9lChoBmgJaA9DCHlzuFY72HBAlIaUUpRoFUvhaBZHQKGCPOP/7zl1fZQoaAZoCWgPQwiHGoUkc3hyQJSGlFKUaBVL4WgWR0ChgnuXeFcqdX2UKGgGaAloD0MI9UwvMdadcUCUhpRSlGgVS/BoFkdAoYKUqrilznV9lChoBmgJaA9DCGMOgo6W3nBAlIaUUpRoFUvdaBZHQKGCqOAAhjh1fZQoaAZoCWgPQwgurYbEva1wQJSGlFKUaBVL32gWR0Chgq1Cw8nvdX2UKGgGaAloD0MID313K4u4cUCUhpRSlGgVS/FoFkdAoYKx+jM3ZXV9lChoBmgJaA9DCDmaIyv//3JAlIaUUpRoFUvFaBZHQKGDNfbblBB1fZQoaAZoCWgPQwgtBg/T/tFzQJSGlFKUaBVLtGgWR0ChgzGXgLqmdX2UKGgGaAloD0MIMPDce7g4ckCUhpRSlGgVS9xoFkdAoYO2EoOQQ3V9lChoBmgJaA9DCDcbKzFP7XBAlIaUUpRoFUvoaBZHQKGDy1kUbkx1fZQoaAZoCWgPQwhMUS6NH9lxQJSGlFKUaBVLyGgWR0ChhAkXLvCudX2UKGgGaAloD0MIUHPyIlN2cUCUhpRSlGgVS+JoFkdAoYQWFUQ043V9lChoBmgJaA9DCDo+WpyxTHFAlIaUUpRoFUvgaBZHQKGEVR/EwWZ1fZQoaAZoCWgPQwgLRbqfk+FxQJSGlFKUaBVL12gWR0ChhRYrjHXFdX2UKGgGaAloD0MIKlYNwtxBbUCUhpRSlGgVS+loFkdAoYVWxfOUuHV9lChoBmgJaA9DCGE41zBDjHBAlIaUUpRoFUvgaBZHQKGFoBNmDlJ1fZQoaAZoCWgPQwjpgY/Byi5wQJSGlFKUaBVL2WgWR0ChhbZ6Uqx1dX2UKGgGaAloD0MIMCsU6X7qb0CUhpRSlGgVS8ZoFkdAoYW8mBvrGHV9lChoBmgJaA9DCH8TChEwN3BAlIaUUpRoFUvFaBZHQKGF041gpjN1fZQoaAZoCWgPQwjl1TkGZNs1QJSGlFKUaBVLemgWR0ChhdyqdYnwdX2UKGgGaAloD0MIkgVM4JZbcECUhpRSlGgVS9RoFkdAoYXfaakRBnV9lChoBmgJaA9DCMKIfQKoo3FAlIaUUpRoFUvnaBZHQKGGWDyOJch1fZQoaAZoCWgPQwgbR6zFZ79wQJSGlFKUaBVL5GgWR0ChhlYv38GcdX2UKGgGaAloD0MIzEI7pxklckCUhpRSlGgVS8hoFkdAoYZ0C3gDR3V9lChoBmgJaA9DCIyGjEcpuHBAlIaUUpRoFUvxaBZHQKGHEoVEd/91fZQoaAZoCWgPQwjWG7XCNDZwQJSGlFKUaBVLzGgWR0Chh053kgfVdX2UKGgGaAloD0MIychZ2FP6cUCUhpRSlGgVS81oFkdAoYdekxh2GXV9lChoBmgJaA9DCLACfLe5BHNAlIaUUpRoFUvmaBZHQKGHaeRxLkF1fZQoaAZoCWgPQwjoZn+gnEJwQJSGlFKUaBVL6WgWR0ChiAvovBacdX2UKGgGaAloD0MI3GgAbwG/b0CUhpRSlGgVS8RoFkdAoYi5Hd43WHV9lChoBmgJaA9DCCqPboQFh3BAlIaUUpRoFUvAaBZHQKGI6lMRHwx1fZQoaAZoCWgPQwgYCtgORgdzQJSGlFKUaBVL6mgWR0ChiR2m51/2dX2UKGgGaAloD0MI7Ny0GedYcECUhpRSlGgVS9FoFkdAoYky6tknTnV9lChoBmgJaA9DCAfPhCaJ0m5AlIaUUpRoFUvZaBZHQKGJNszl90B1fZQoaAZoCWgPQwgTnWUWodtyQJSGlFKUaBVL6GgWR0ChiWt2s7uEdX2UKGgGaAloD0MI6X+5Fu2+ckCUhpRSlGgVS+NoFkdAoYlxZntfHHV9lChoBmgJaA9DCEVGByQhq3JAlIaUUpRoFU0SAWgWR0ChiYU5+6RRdX2UKGgGaAloD0MISIszhjkicECUhpRSlGgVS9doFkdAoYm91p0wJ3V9lChoBmgJaA9DCEqZ1NDGoHJAlIaUUpRoFUvVaBZHQKGJ0GlANXp1fZQoaAZoCWgPQwhOY3stqC9zQJSGlFKUaBVL5WgWR0Chie2MbWEsdX2UKGgGaAloD0MIDaX2IhqNcECUhpRSlGgVS85oFkdAoYpXuPV/c3V9lChoBmgJaA9DCHEEqRS7BW9AlIaUUpRoFUvfaBZHQKGK26fapP11fZQoaAZoCWgPQwhp/pjWpkpxQJSGlFKUaBVL2mgWR0ChiuRrJr+HdX2UKGgGaAloD0MIhQg4hCqCcUCUhpRSlGgVS+BoFkdAoYrxGlQ/HHV9lChoBmgJaA9DCLrZHyi3nHNAlIaUUpRoFUv1aBZHQKGL+1DSgGt1fZQoaAZoCWgPQwgXYvVHWPtyQJSGlFKUaBVL0WgWR0ChjG/5ckdFdX2UKGgGaAloD0MIY35uaIpockCUhpRSlGgVS+poFkdAoYx/Vd5Y5nV9lChoBmgJaA9DCMO68e5IFHJAlIaUUpRoFUvhaBZHQKGMhvGZNPB1fZQoaAZoCWgPQwgC8E+pEg1yQJSGlFKUaBVL02gWR0ChjJAow22odX2UKGgGaAloD0MIEDtT6LzeO0CUhpRSlGgVS21oFkdAoYyydnTRY3V9lChoBmgJaA9DCCdPWU1XqW1AlIaUUpRoFUvbaBZHQKGMt+6y0KJ1fZQoaAZoCWgPQwjX3TzVYUVwQJSGlFKUaBVLzmgWR0ChjLyncclxdX2UKGgGaAloD0MIEjC6vLmNcUCUhpRSlGgVS8FoFkdAoYzgOQQtjHV9lChoBmgJaA9DCELNkCoKGG9AlIaUUpRoFUvbaBZHQKGM84+8oQZ1fZQoaAZoCWgPQwjJdyl1SYlvQJSGlFKUaBVL7GgWR0ChjUf0/W1/dX2UKGgGaAloD0MIB9Dv+zd2cECUhpRSlGgVS91oFkdAoY1gatLcsXV9lChoBmgJaA9DCAIuyJal8nNAlIaUUpRoFUv5aBZHQKGN81XvH951fZQoaAZoCWgPQwjEIoYdBlpwQJSGlFKUaBVL52gWR0ChjhZssQNDdX2UKGgGaAloD0MImzi53yFEckCUhpRSlGgVS9RoFkdAoY5ZNO/L1XV9lChoBmgJaA9DCLg/Fw0Z0XFAlIaUUpRoFUvnaBZHQKGOtdTHbRF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb1b45467dd3148505352d3b84a33011e95b2c123428cdd7c559ac3952f19203
|
3 |
+
size 143989
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,13 +69,13 @@
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.995,
|
81 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8ca75dd290>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8ca75dd320>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8ca75dd3b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8ca75dd440>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8ca75dd4d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8ca75dd560>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8ca75dd5f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8ca75dd680>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8ca75dd710>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8ca75dd7a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8ca75dd830>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f8ca7623b70>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000.0,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1651949822.8632696,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAIvgr4Q3Ck/uL/XvNddDb+z7sC+0gg3PgAAAAAAAAAAzaUIvWnaVrxu4Aa99fUGvSPSVD3oJDq+AACAPwAAgD8AGPk8vjKQPWhU9b3+PnS+gMhCvUpjgr0AAAAAAAAAAGYEZjwKJ1a5sQepPecL2bH2Lwy6+y/4swAAgD8AAIA/zX+6vOm4MD3NEoY8rH6Vvt2AmrzSiR68AAAAAAAAAADNfck8Ic2evDg7nL7TJky9b1TNPfruyj4AAIA/AACAPzNTS7oFBpK7PqUAvSJjbTvDAdo8HiZpvAAAgD8AAIA/85yGPuLnHD+N21q+1/vWvruXsz7EV4K+AAAAAAAAAABmXbw9vIsGPrad/L5i77C+NFGCvl1ZLr4AAAAAAAAAAHOR4D1fFIs/ANy5PvO8DL9bJTA+pqFOPgAAAAAAAAAAsylEvRLnzTxrC14+dOl6vgiSez0nYiS9AAAAAAAAAADbooy+ojqSP3Oe5r6d5x6/10XZvsoeD70AAAAAAAAAAJpK1Lyu+Ym6kiyZt22AjrL+K+y5qCGyNgAAgD8AAIA/5iRhPQTjkD7H3Ry+vRSxvv4Rhb0y+e28AAAAAAAAAAAzsn+9jYoePtDUAz1pbda+hws2vBiwID0AAAAAAAAAAM2sxDyPXxG86c+zvVNa4DzaH1Y9+i7evQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2uTwSadbbkCUhpRSlIwBbJRL64wBdJRHQKFTNUAksz51fZQoaAZoCWgPQwha8nhaPihxQJSGlFKUaBVL5GgWR0ChUz3SSeRQdX2UKGgGaAloD0MIWOGWj6Q8bUCUhpRSlGgVS9ZoFkdAoVN5ztCzC3V9lChoBmgJaA9DCMEdqFPeCnNAlIaUUpRoFU3CAWgWR0ChU6mAbyYpdX2UKGgGaAloD0MIlwLS/ofFbUCUhpRSlGgVS9poFkdAoVP/JNj9XXV9lChoBmgJaA9DCFEzpIqiiXBAlIaUUpRoFUveaBZHQKFU0OH31z11fZQoaAZoCWgPQwjg10gSxCNwQJSGlFKUaBVL2WgWR0ChVNmkvboKdX2UKGgGaAloD0MIGJP+XkrDcUCUhpRSlGgVS8xoFkdAoVT5r+Hae3V9lChoBmgJaA9DCLCQuTKooXJAlIaUUpRoFUvlaBZHQKFVKcNpdrx1fZQoaAZoCWgPQwg1YJD0aZ5wQJSGlFKUaBVL0mgWR0ChVTOhsZYQdX2UKGgGaAloD0MIbF9AL5zjcECUhpRSlGgVS+poFkdAoVVEGC7K73V9lChoBmgJaA9DCNv4E5WNG3BAlIaUUpRoFUvPaBZHQKFVVQ40dil1fZQoaAZoCWgPQwjvrN12Ib1tQJSGlFKUaBVL0WgWR0ChVWEfT1CgdX2UKGgGaAloD0MI4lrtYS9BcECUhpRSlGgVS+BoFkdAoVWEcXFcZHV9lChoBmgJaA9DCEFmZ9F7PHNAlIaUUpRoFUvjaBZHQKFWe5wwTM91fZQoaAZoCWgPQwhNMnIW9gZwQJSGlFKUaBVL0mgWR0ChVqPRZ2ZBdX2UKGgGaAloD0MI6USCqSaQc0CUhpRSlGgVTTkBaBZHQKFWujXWe6J1fZQoaAZoCWgPQwhC0TyABRx0QJSGlFKUaBVL1WgWR0ChVrutwJgLdX2UKGgGaAloD0MIEHo2q34CcECUhpRSlGgVS85oFkdAoVbaAnUlRnV9lChoBmgJaA9DCNk/TwMGL21AlIaUUpRoFUvUaBZHQKFXHnHNorZ1fZQoaAZoCWgPQwjz5nCtdmFvQJSGlFKUaBVLymgWR0ChV0odU83ddX2UKGgGaAloD0MIQWZn0bvBckCUhpRSlGgVS8toFkdAoVgNXxOLznV9lChoBmgJaA9DCPuxSX5E1G5AlIaUUpRoFUvFaBZHQKFYTqs2ehB1fZQoaAZoCWgPQwh9zt2uF4pvQJSGlFKUaBVL22gWR0ChWFhfBvaUdX2UKGgGaAloD0MIa5p3nKLmcUCUhpRSlGgVS9poFkdAoVhxplBhQXV9lChoBmgJaA9DCH1AoDMpiHFAlIaUUpRoFUvLaBZHQKFYiAFPi1l1fZQoaAZoCWgPQwjKUuv9xmhzQJSGlFKUaBVLzmgWR0Chfs20Z3s5dX2UKGgGaAloD0MIDhDM0aMicUCUhpRSlGgVS95oFkdAoX7YkE9t/HV9lChoBmgJaA9DCHicoiP5LXJAlIaUUpRoFUvnaBZHQKF/ERnvlU91fZQoaAZoCWgPQwieCrjn+UhxQJSGlFKUaBVL1WgWR0Chfw4jSofkdX2UKGgGaAloD0MIv3yyYrhcb0CUhpRSlGgVS9hoFkdAoYAPgUDdQHV9lChoBmgJaA9DCAVvSKMC4W9AlIaUUpRoFUvOaBZHQKGAII+GGmF1fZQoaAZoCWgPQwhIbk26rU1wQJSGlFKUaBVLzWgWR0ChgD5iExqPdX2UKGgGaAloD0MI4zREFX4ybkCUhpRSlGgVS9poFkdAoYBUVHnU2HV9lChoBmgJaA9DCNKpK5/lgHFAlIaUUpRoFUvqaBZHQKGAg7ROUMZ1fZQoaAZoCWgPQwjH8q56gBNwQJSGlFKUaBVL3WgWR0ChgM3c580DdX2UKGgGaAloD0MIqRd8mlM2cUCUhpRSlGgVS9ZoFkdAoYDg7Njbz3V9lChoBmgJaA9DCHMs76qHh3BAlIaUUpRoFUvEaBZHQKGBlof0Vah1fZQoaAZoCWgPQwgapOAp5O9yQJSGlFKUaBVL12gWR0ChgaeXqqwRdX2UKGgGaAloD0MIL8N/ukGGcUCUhpRSlGgVS9toFkdAoYIEl7dBSnV9lChoBmgJaA9DCHlzuFY72HBAlIaUUpRoFUvhaBZHQKGCPOP/7zl1fZQoaAZoCWgPQwiHGoUkc3hyQJSGlFKUaBVL4WgWR0ChgnuXeFcqdX2UKGgGaAloD0MI9UwvMdadcUCUhpRSlGgVS/BoFkdAoYKUqrilznV9lChoBmgJaA9DCGMOgo6W3nBAlIaUUpRoFUvdaBZHQKGCqOAAhjh1fZQoaAZoCWgPQwgurYbEva1wQJSGlFKUaBVL32gWR0Chgq1Cw8nvdX2UKGgGaAloD0MID313K4u4cUCUhpRSlGgVS/FoFkdAoYKx+jM3ZXV9lChoBmgJaA9DCDmaIyv//3JAlIaUUpRoFUvFaBZHQKGDNfbblBB1fZQoaAZoCWgPQwgtBg/T/tFzQJSGlFKUaBVLtGgWR0ChgzGXgLqmdX2UKGgGaAloD0MIMPDce7g4ckCUhpRSlGgVS9xoFkdAoYO2EoOQQ3V9lChoBmgJaA9DCDcbKzFP7XBAlIaUUpRoFUvoaBZHQKGDy1kUbkx1fZQoaAZoCWgPQwhMUS6NH9lxQJSGlFKUaBVLyGgWR0ChhAkXLvCudX2UKGgGaAloD0MIUHPyIlN2cUCUhpRSlGgVS+JoFkdAoYQWFUQ043V9lChoBmgJaA9DCDo+WpyxTHFAlIaUUpRoFUvgaBZHQKGEVR/EwWZ1fZQoaAZoCWgPQwgLRbqfk+FxQJSGlFKUaBVL12gWR0ChhRYrjHXFdX2UKGgGaAloD0MIKlYNwtxBbUCUhpRSlGgVS+loFkdAoYVWxfOUuHV9lChoBmgJaA9DCGE41zBDjHBAlIaUUpRoFUvgaBZHQKGFoBNmDlJ1fZQoaAZoCWgPQwjpgY/Byi5wQJSGlFKUaBVL2WgWR0ChhbZ6Uqx1dX2UKGgGaAloD0MIMCsU6X7qb0CUhpRSlGgVS8ZoFkdAoYW8mBvrGHV9lChoBmgJaA9DCH8TChEwN3BAlIaUUpRoFUvFaBZHQKGF041gpjN1fZQoaAZoCWgPQwjl1TkGZNs1QJSGlFKUaBVLemgWR0ChhdyqdYnwdX2UKGgGaAloD0MIkgVM4JZbcECUhpRSlGgVS9RoFkdAoYXfaakRBnV9lChoBmgJaA9DCMKIfQKoo3FAlIaUUpRoFUvnaBZHQKGGWDyOJch1fZQoaAZoCWgPQwgbR6zFZ79wQJSGlFKUaBVL5GgWR0ChhlYv38GcdX2UKGgGaAloD0MIzEI7pxklckCUhpRSlGgVS8hoFkdAoYZ0C3gDR3V9lChoBmgJaA9DCIyGjEcpuHBAlIaUUpRoFUvxaBZHQKGHEoVEd/91fZQoaAZoCWgPQwjWG7XCNDZwQJSGlFKUaBVLzGgWR0Chh053kgfVdX2UKGgGaAloD0MIychZ2FP6cUCUhpRSlGgVS81oFkdAoYdekxh2GXV9lChoBmgJaA9DCLACfLe5BHNAlIaUUpRoFUvmaBZHQKGHaeRxLkF1fZQoaAZoCWgPQwjoZn+gnEJwQJSGlFKUaBVL6WgWR0ChiAvovBacdX2UKGgGaAloD0MI3GgAbwG/b0CUhpRSlGgVS8RoFkdAoYi5Hd43WHV9lChoBmgJaA9DCCqPboQFh3BAlIaUUpRoFUvAaBZHQKGI6lMRHwx1fZQoaAZoCWgPQwgYCtgORgdzQJSGlFKUaBVL6mgWR0ChiR2m51/2dX2UKGgGaAloD0MI7Ny0GedYcECUhpRSlGgVS9FoFkdAoYky6tknTnV9lChoBmgJaA9DCAfPhCaJ0m5AlIaUUpRoFUvZaBZHQKGJNszl90B1fZQoaAZoCWgPQwgTnWUWodtyQJSGlFKUaBVL6GgWR0ChiWt2s7uEdX2UKGgGaAloD0MI6X+5Fu2+ckCUhpRSlGgVS+NoFkdAoYlxZntfHHV9lChoBmgJaA9DCEVGByQhq3JAlIaUUpRoFU0SAWgWR0ChiYU5+6RRdX2UKGgGaAloD0MISIszhjkicECUhpRSlGgVS9doFkdAoYm91p0wJ3V9lChoBmgJaA9DCEqZ1NDGoHJAlIaUUpRoFUvVaBZHQKGJ0GlANXp1fZQoaAZoCWgPQwhOY3stqC9zQJSGlFKUaBVL5WgWR0Chie2MbWEsdX2UKGgGaAloD0MIDaX2IhqNcECUhpRSlGgVS85oFkdAoYpXuPV/c3V9lChoBmgJaA9DCHEEqRS7BW9AlIaUUpRoFUvfaBZHQKGK26fapP11fZQoaAZoCWgPQwhp/pjWpkpxQJSGlFKUaBVL2mgWR0ChiuRrJr+HdX2UKGgGaAloD0MIhQg4hCqCcUCUhpRSlGgVS+BoFkdAoYrxGlQ/HHV9lChoBmgJaA9DCLrZHyi3nHNAlIaUUpRoFUv1aBZHQKGL+1DSgGt1fZQoaAZoCWgPQwgXYvVHWPtyQJSGlFKUaBVL0WgWR0ChjG/5ckdFdX2UKGgGaAloD0MIY35uaIpockCUhpRSlGgVS+poFkdAoYx/Vd5Y5nV9lChoBmgJaA9DCMO68e5IFHJAlIaUUpRoFUvhaBZHQKGMhvGZNPB1fZQoaAZoCWgPQwgC8E+pEg1yQJSGlFKUaBVL02gWR0ChjJAow22odX2UKGgGaAloD0MIEDtT6LzeO0CUhpRSlGgVS21oFkdAoYyydnTRY3V9lChoBmgJaA9DCCdPWU1XqW1AlIaUUpRoFUvbaBZHQKGMt+6y0KJ1fZQoaAZoCWgPQwjX3TzVYUVwQJSGlFKUaBVLzmgWR0ChjLyncclxdX2UKGgGaAloD0MIEjC6vLmNcUCUhpRSlGgVS8FoFkdAoYzgOQQtjHV9lChoBmgJaA9DCELNkCoKGG9AlIaUUpRoFUvbaBZHQKGM84+8oQZ1fZQoaAZoCWgPQwjJdyl1SYlvQJSGlFKUaBVL7GgWR0ChjUf0/W1/dX2UKGgGaAloD0MIB9Dv+zd2cECUhpRSlGgVS91oFkdAoY1gatLcsXV9lChoBmgJaA9DCAIuyJal8nNAlIaUUpRoFUv5aBZHQKGN81XvH951fZQoaAZoCWgPQwjEIoYdBlpwQJSGlFKUaBVL52gWR0ChjhZssQNDdX2UKGgGaAloD0MImzi53yFEckCUhpRSlGgVS9RoFkdAoY5ZNO/L1XV9lChoBmgJaA9DCLg/Fw0Z0XFAlIaUUpRoFUvnaBZHQKGOtdTHbRF1ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 620,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.995,
|
81 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84893
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e0be8133cf046efa2ef9184b371393dc78e4871407bd28eb56e8db0723cad9e
|
3 |
size 84893
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9b4669a939283f6a0822ae0f823a6c973a348966b4308b2041fbd0b3b77e59d
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee7c196720752bac4087edc234941f720dbbbca01132e576712d73acf70a18b0
|
3 |
+
size 215010
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 282.3607801060884, "std_reward": 14.39274606156918, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T19:34:42.069719"}
|