anechaev commited on
Commit
b2ec0ad
1 Parent(s): 1ed8482

Initial attempt

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 255.98 +/- 35.52
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f45eacda4d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45eacda560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45eacda5f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45eacda680>", "_build": "<function ActorCriticPolicy._build at 0x7f45eacda710>", "forward": "<function ActorCriticPolicy.forward at 0x7f45eacda7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45eacda830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f45eacda8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45eacda950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45eacda9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45eacdaa70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f45ead20b10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651941927.8815582, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADc/LuPxjq6BlKpOk0uGLaVNys5nznEuQAAgD8AAIA/GjdHPRREgbqIwny7hxOAOLgQpjp3UAw6AACAPwAAgD8AqLk9KeAJugh4kLtKvZk4MDjKOnzuLTkAAIA/AACAP1rPmT1SuJq3lrz4N2Yeqq9MyR478goWtwAAgD8AAIA/5vCBPVwrKboN7RE8yUqvNg3LULl+lao1AACAPwAAgD8A6pY8UgCAuWWMhLq+8wS2h5heOpUmnjkAAIA/AACAP8a3WT7u24o+i5m2vU6Ypr4Uhh89J6OJvAAAAAAAAAAA5t0KPVKu47uydCa88vyaPIT1Rb2L3oE9AACAPwAAgD8AFMm7e5CFuu66M7gxqKWzn3AHOxPITTcAAIA/AACAP5qluD1cKT28pTPRu5ZMtDyUn6W95oSSPQAAgD8AAAAAQLqDvVJw8bk9l4Y6gWKpNWcq0Tqe2525AACAPwAAgD8zyvw89tw1uoIKGrpkmQ21Z7VIum43NjkAAIA/AACAPwDzqTzsyZW5wIhrOy1I5TbECMG6KGKIugAAgD8AAIA/muO7vezJwrk6m1s8w3K3NN24vLqkc5YzAACAPwAAgD/NtC08hfvWudN9U7oK/lO290JsO9ZMdjkAAIA/AACAP41qrj0UirO6SzLlOxtyTjnUsCA7GdCBugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0v2cgvxnY0CUhpRSlIwBbJRN6AOMAXSUR0CeeWJwKjSHdX2UKGgGaAloD0MISWdg5GWYYkCUhpRSlGgVTegDaBZHQJ6BYYLsrup1fZQoaAZoCWgPQwj3rkFfertmQJSGlFKUaBVN6ANoFkdAnoUXVkMCtHV9lChoBmgJaA9DCDf6mA8I1GFAlIaUUpRoFU3oA2gWR0CejKvlU6xPdX2UKGgGaAloD0MIoWXdPxYhYECUhpRSlGgVTegDaBZHQJ6RvYTTOPh1fZQoaAZoCWgPQwiyLJj4I0dgQJSGlFKUaBVN6ANoFkdAnpHnoX9BKXV9lChoBmgJaA9DCJDaxMl9n2JAlIaUUpRoFU3oA2gWR0Cek9R2r4nGdX2UKGgGaAloD0MIS1mGONauZUCUhpRSlGgVTegDaBZHQJ6aBbMX7+F1fZQoaAZoCWgPQwibq+Y5IrFjQJSGlFKUaBVN6ANoFkdAnqC5lWfbsXV9lChoBmgJaA9DCBlW8UbmP2VAlIaUUpRoFU3oA2gWR0Ce+8mzByjpdX2UKGgGaAloD0MIOj3vxoLkZECUhpRSlGgVTegDaBZHQJ8HbzqbBoF1fZQoaAZoCWgPQwhZhc0AF2NkQJSGlFKUaBVN6ANoFkdAnweHd0q6OHV9lChoBmgJaA9DCAsm/ijqW2BAlIaUUpRoFU3oA2gWR0CfCd6yjYZmdX2UKGgGaAloD0MIh8Woa+29NUCUhpRSlGgVS7poFkdAnwoU4rBj4HV9lChoBmgJaA9DCFWFBmLZmkxAlIaUUpRoFUusaBZHQJ8Txjx0+1V1fZQoaAZoCWgPQwiVYHE484NIQJSGlFKUaBVLm2gWR0CfFR8gpz91dX2UKGgGaAloD0MIpFUt6SjYZECUhpRSlGgVTegDaBZHQJ8WT4EfT1F1fZQoaAZoCWgPQwh+q3XicoxlQJSGlFKUaBVN6ANoFkdAnxjOO4oZynV9lChoBmgJaA9DCNfc0f/yN2JAlIaUUpRoFU3oA2gWR0CfGPVtGd7OdX2UKGgGaAloD0MIs874vrgzZUCUhpRSlGgVTegDaBZHQJ8Z8L8aXKN1fZQoaAZoCWgPQwjRevgy0UxkQJSGlFKUaBVN6ANoFkdAnyC0hRqGlHV9lChoBmgJaA9DCHbexmbHc2JAlIaUUpRoFU3oA2gWR0CfI/4FA3UAdX2UKGgGaAloD0MIB5eOOc+EaECUhpRSlGgVTegDaBZHQJ8q5JqZc9p1fZQoaAZoCWgPQwioxeBh2tcFQJSGlFKUaBVLv2gWR0CfLbu8brC4dX2UKGgGaAloD0MIRSxi2OEqZkCUhpRSlGgVTegDaBZHQJ8vwPRRdhR1fZQoaAZoCWgPQwix4emVMp5jQJSGlFKUaBVN6ANoFkdAny/mzjWCmXV9lChoBmgJaA9DCLqhKTt93GNAlIaUUpRoFU3oA2gWR0CfMa4oZydXdX2UKGgGaAloD0MII74Ts14oYkCUhpRSlGgVTegDaBZHQJ83n3ta6jF1fZQoaAZoCWgPQwiRfvs6cL1kQJSGlFKUaBVN6ANoFkdAnz3PcvduYXV9lChoBmgJaA9DCJwVURN9oV1AlIaUUpRoFU3oA2gWR0CfpK5oXbdrdX2UKGgGaAloD0MIFajF4GGsakCUhpRSlGgVTegDaBZHQJ+nW4YrJ8x1fZQoaAZoCWgPQwimY84z9pVeQJSGlFKUaBVN6ANoFkdAn7KEcKgIyHV9lChoBmgJaA9DCL5KPnaXrWFAlIaUUpRoFU3oA2gWR0Cfs+gmJFb3dX2UKGgGaAloD0MIehhanZx2YkCUhpRSlGgVTegDaBZHQJ+1Eb70nPV1fZQoaAZoCWgPQwjrc7UVe7VkQJSGlFKUaBVN6ANoFkdAn7djER8MNXV9lChoBmgJaA9DCO4/Mh26x2JAlIaUUpRoFU3oA2gWR0Cft4hWo3rEdX2UKGgGaAloD0MIJ8Eb0qg9ZUCUhpRSlGgVTegDaBZHQJ+4Y9+w1SB1fZQoaAZoCWgPQwgBpgwc0PRNQJSGlFKUaBVLnGgWR0CfwhaP0Zm7dX2UKGgGaAloD0MIByXMtP1LZECUhpRSlGgVTegDaBZHQJ/CgzoEB8x1fZQoaAZoCWgPQwhgzJasCphiQJSGlFKUaBVN6ANoFkdAn8kvzJ6ppHV9lChoBmgJaA9DCPIHA8+9vmNAlIaUUpRoFU3oA2gWR0Cfy+SEUTL4dX2UKGgGaAloD0MIcHuCxPbfYUCUhpRSlGgVTegDaBZHQJ/NtuivgWJ1fZQoaAZoCWgPQwj0+L1Nf5liQJSGlFKUaBVN6ANoFkdAn83YrFwT/XV9lChoBmgJaA9DCAhXQKGedWVAlIaUUpRoFU3oA2gWR0Cfz3GdqcmTdX2UKGgGaAloD0MIZylZTsJZYECUhpRSlGgVTegDaBZHQJ/UwVXV9Wp1fZQoaAZoCWgPQwi5VRADXelCQJSGlFKUaBVLvmgWR0Cf19jghr31dX2UKGgGaAloD0MIXW+bqZCyYkCUhpRSlGgVTegDaBZHQJ/ab1oQFs51fZQoaAZoCWgPQwj+1HjpptJkQJSGlFKUaBVN6ANoFkdAoB+1vl2eQXV9lChoBmgJaA9DCKNcGr/wvGRAlIaUUpRoFU3oA2gWR0CgIPRjriVCdX2UKGgGaAloD0MIFEIHXUJiYkCUhpRSlGgVTegDaBZHQKAmVf642CN1fZQoaAZoCWgPQwi7mGa6V9FlQJSGlFKUaBVN6ANoFkdAoCcBFd9lVnV9lChoBmgJaA9DCA8mxccnXGlAlIaUUpRoFU3oA2gWR0CgJ5TI3irDdX2UKGgGaAloD0MIVcGopE6aYUCUhpRSlGgVTegDaBZHQKAoyNFz+3p1fZQoaAZoCWgPQwg8a7ddaLZmQJSGlFKUaBVN6ANoFkdAoCjao4uK43V9lChoBmgJaA9DCJYgI6BCa2RAlIaUUpRoFU3oA2gWR0CgLpMKkVN6dX2UKGgGaAloD0MIiSXl7vP9YkCUhpRSlGgVTegDaBZHQKAuyCzTnaF1fZQoaAZoCWgPQwhPBHEezthnQJSGlFKUaBVN6ANoFkdAoDJAZCOWB3V9lChoBmgJaA9DCHlcVIsI7GNAlIaUUpRoFU3oA2gWR0CgNH8PFvQ4dX2UKGgGaAloD0MIVPzfEZUxZkCUhpRSlGgVTegDaBZHQKA0lOP/7zl1fZQoaAZoCWgPQwgt7dRc7jtlQJSGlFKUaBVN6ANoFkdAoDVq08eS0XV9lChoBmgJaA9DCFHYRdEDSGJAlIaUUpRoFU3oA2gWR0CgOFc580DVdX2UKGgGaAloD0MIBg39E1ykZUCUhpRSlGgVTegDaBZHQKA5/Cw8nu11fZQoaAZoCWgPQwhHWb+ZmG5OQJSGlFKUaBVLxWgWR0CgOzb0WdmQdX2UKGgGaAloD0MIU67wLpc9Y0CUhpRSlGgVTegDaBZHQKA7UmtQsPJ1fZQoaAZoCWgPQwhMcOoDyd1jQJSGlFKUaBVN6ANoFkdAoGzj2exwAHV9lChoBmgJaA9DCOW2fY/6dmhAlIaUUpRoFU3oA2gWR0Cgbhf7zkIYdX2UKGgGaAloD0MIvVKWIY5wYUCUhpRSlGgVTegDaBZHQKBy9655JK91fZQoaAZoCWgPQwjmsPuO4fNOQJSGlFKUaBVLuWgWR0Cgc19onKGMdX2UKGgGaAloD0MIwf7r3LQbZUCUhpRSlGgVTegDaBZHQKBzlqnFYMh1fZQoaAZoCWgPQwhig4WTtMpiQJSGlFKUaBVN6ANoFkdAoHQh+vyLAHV9lChoBmgJaA9DCNJwytz8uGJAlIaUUpRoFU3oA2gWR0CgdTFtKqXGdX2UKGgGaAloD0MI/U/+7h0+ZUCUhpRSlGgVTegDaBZHQKB1QOfdykt1fZQoaAZoCWgPQwiOBvAWyDFiQJSGlFKUaBVN6ANoFkdAoHqkD6nBL3V9lChoBmgJaA9DCCRgdHnzvmVAlIaUUpRoFU3oA2gWR0CgetaCL/CJdX2UKGgGaAloD0MIPiMRGkE+Z0CUhpRSlGgVTegDaBZHQKB+RuIAOrh1fZQoaAZoCWgPQwjjiSDOwxtlQJSGlFKUaBVN6ANoFkdAoICJ1gYxcnV9lChoBmgJaA9DCDC7Jw8Lc0hAlIaUUpRoFUvBaBZHQKCBN7kXDWN1fZQoaAZoCWgPQwimme51UsBhQJSGlFKUaBVN6ANoFkdAoIF8ZgogFHV9lChoBmgJaA9DCH6K48ArqmNAlIaUUpRoFU3oA2gWR0CghFw9ic5KdX2UKGgGaAloD0MIdeYeEr5oZUCUhpRSlGgVTegDaBZHQKCF660Y0l91fZQoaAZoCWgPQwiSzsDIS2VnQJSGlFKUaBVN6ANoFkdAoIcYLZzxPXV9lChoBmgJaA9DCNswCoLHDWhAlIaUUpRoFU3oA2gWR0CghzPaL4vfdX2UKGgGaAloD0MIvHfUmBADTkCUhpRSlGgVS7loFkdAoLcKJhvzfHV9lChoBmgJaA9DCH+hR4weMGVAlIaUUpRoFU3oA2gWR0CguV9jwx33dX2UKGgGaAloD0MIuaZAZmeLXkCUhpRSlGgVTegDaBZHQKC+luCwr2B1fZQoaAZoCWgPQwhK8IY0KnlhQJSGlFKUaBVN6ANoFkdAoL8HaFmFrXV9lChoBmgJaA9DCNFcp5EWt2lAlIaUUpRoFU3oA2gWR0Cgvz8c2itadX2UKGgGaAloD0MIvOtsyD9SXkCUhpRSlGgVTegDaBZHQKC/0rLhaTx1fZQoaAZoCWgPQwgzTkNUYblnQJSGlFKUaBVN6ANoFkdAoMDyBwuM/HV9lChoBmgJaA9DCHpsy4Az3mVAlIaUUpRoFU3oA2gWR0CgwQOmzjWDdX2UKGgGaAloD0MI+1dWmpTIRkCUhpRSlGgVS5RoFkdAoMXUQCjk/HV9lChoBmgJaA9DCGt/Z3t0G2RAlIaUUpRoFU3oA2gWR0Cgxu0Ltu1ndX2UKGgGaAloD0MIsWoQ5nZSZUCUhpRSlGgVTegDaBZHQKDKzLV4HHF1fZQoaAZoCWgPQwjEIRtIFwNIQJSGlFKUaBVLmmgWR0Cgy7KTSsr/dX2UKGgGaAloD0MIVyWRfZDcZUCUhpRSlGgVTegDaBZHQKDNYohIOH51fZQoaAZoCWgPQwhS7j7Hx7FjQJSGlFKUaBVN6ANoFkdAoM4r3wkPc3V9lChoBmgJaA9DCIYeMXruRmJAlIaUUpRoFU3oA2gWR0CgznaE8JUpdX2UKGgGaAloD0MIXwoPml1PZECUhpRSlGgVTegDaBZHQKDRhlyzXz11fZQoaAZoCWgPQwjdeHdkLCpkQJSGlFKUaBVN6ANoFkdAoNMrebd8A3V9lChoBmgJaA9DCIf4hy09wGJAlIaUUpRoFU3oA2gWR0Cg1Htzr/sFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
model1st.mod ADDED
Binary file (144 kB). View file
 
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9b76af5b097a41d5ef823b23ee38bd40ebb0d1df2bf086e82a552930a1857e5
3
+ size 144099
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f45eacda4d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45eacda560>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45eacda5f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45eacda680>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f45eacda710>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f45eacda7a0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45eacda830>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f45eacda8c0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45eacda950>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45eacda9e0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45eacdaa70>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f45ead20b10>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000.0,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651941927.8815582,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADc/LuPxjq6BlKpOk0uGLaVNys5nznEuQAAgD8AAIA/GjdHPRREgbqIwny7hxOAOLgQpjp3UAw6AACAPwAAgD8AqLk9KeAJugh4kLtKvZk4MDjKOnzuLTkAAIA/AACAP1rPmT1SuJq3lrz4N2Yeqq9MyR478goWtwAAgD8AAIA/5vCBPVwrKboN7RE8yUqvNg3LULl+lao1AACAPwAAgD8A6pY8UgCAuWWMhLq+8wS2h5heOpUmnjkAAIA/AACAP8a3WT7u24o+i5m2vU6Ypr4Uhh89J6OJvAAAAAAAAAAA5t0KPVKu47uydCa88vyaPIT1Rb2L3oE9AACAPwAAgD8AFMm7e5CFuu66M7gxqKWzn3AHOxPITTcAAIA/AACAP5qluD1cKT28pTPRu5ZMtDyUn6W95oSSPQAAgD8AAAAAQLqDvVJw8bk9l4Y6gWKpNWcq0Tqe2525AACAPwAAgD8zyvw89tw1uoIKGrpkmQ21Z7VIum43NjkAAIA/AACAPwDzqTzsyZW5wIhrOy1I5TbECMG6KGKIugAAgD8AAIA/muO7vezJwrk6m1s8w3K3NN24vLqkc5YzAACAPwAAgD/NtC08hfvWudN9U7oK/lO290JsO9ZMdjkAAIA/AACAP41qrj0UirO6SzLlOxtyTjnUsCA7GdCBugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0v2cgvxnY0CUhpRSlIwBbJRN6AOMAXSUR0CeeWJwKjSHdX2UKGgGaAloD0MISWdg5GWYYkCUhpRSlGgVTegDaBZHQJ6BYYLsrup1fZQoaAZoCWgPQwj3rkFfertmQJSGlFKUaBVN6ANoFkdAnoUXVkMCtHV9lChoBmgJaA9DCDf6mA8I1GFAlIaUUpRoFU3oA2gWR0CejKvlU6xPdX2UKGgGaAloD0MIoWXdPxYhYECUhpRSlGgVTegDaBZHQJ6RvYTTOPh1fZQoaAZoCWgPQwiyLJj4I0dgQJSGlFKUaBVN6ANoFkdAnpHnoX9BKXV9lChoBmgJaA9DCJDaxMl9n2JAlIaUUpRoFU3oA2gWR0Cek9R2r4nGdX2UKGgGaAloD0MIS1mGONauZUCUhpRSlGgVTegDaBZHQJ6aBbMX7+F1fZQoaAZoCWgPQwibq+Y5IrFjQJSGlFKUaBVN6ANoFkdAnqC5lWfbsXV9lChoBmgJaA9DCBlW8UbmP2VAlIaUUpRoFU3oA2gWR0Ce+8mzByjpdX2UKGgGaAloD0MIOj3vxoLkZECUhpRSlGgVTegDaBZHQJ8HbzqbBoF1fZQoaAZoCWgPQwhZhc0AF2NkQJSGlFKUaBVN6ANoFkdAnweHd0q6OHV9lChoBmgJaA9DCAsm/ijqW2BAlIaUUpRoFU3oA2gWR0CfCd6yjYZmdX2UKGgGaAloD0MIh8Woa+29NUCUhpRSlGgVS7poFkdAnwoU4rBj4HV9lChoBmgJaA9DCFWFBmLZmkxAlIaUUpRoFUusaBZHQJ8Txjx0+1V1fZQoaAZoCWgPQwiVYHE484NIQJSGlFKUaBVLm2gWR0CfFR8gpz91dX2UKGgGaAloD0MIpFUt6SjYZECUhpRSlGgVTegDaBZHQJ8WT4EfT1F1fZQoaAZoCWgPQwh+q3XicoxlQJSGlFKUaBVN6ANoFkdAnxjOO4oZynV9lChoBmgJaA9DCNfc0f/yN2JAlIaUUpRoFU3oA2gWR0CfGPVtGd7OdX2UKGgGaAloD0MIs874vrgzZUCUhpRSlGgVTegDaBZHQJ8Z8L8aXKN1fZQoaAZoCWgPQwjRevgy0UxkQJSGlFKUaBVN6ANoFkdAnyC0hRqGlHV9lChoBmgJaA9DCHbexmbHc2JAlIaUUpRoFU3oA2gWR0CfI/4FA3UAdX2UKGgGaAloD0MIB5eOOc+EaECUhpRSlGgVTegDaBZHQJ8q5JqZc9p1fZQoaAZoCWgPQwioxeBh2tcFQJSGlFKUaBVLv2gWR0CfLbu8brC4dX2UKGgGaAloD0MIRSxi2OEqZkCUhpRSlGgVTegDaBZHQJ8vwPRRdhR1fZQoaAZoCWgPQwix4emVMp5jQJSGlFKUaBVN6ANoFkdAny/mzjWCmXV9lChoBmgJaA9DCLqhKTt93GNAlIaUUpRoFU3oA2gWR0CfMa4oZydXdX2UKGgGaAloD0MII74Ts14oYkCUhpRSlGgVTegDaBZHQJ83n3ta6jF1fZQoaAZoCWgPQwiRfvs6cL1kQJSGlFKUaBVN6ANoFkdAnz3PcvduYXV9lChoBmgJaA9DCJwVURN9oV1AlIaUUpRoFU3oA2gWR0CfpK5oXbdrdX2UKGgGaAloD0MIFajF4GGsakCUhpRSlGgVTegDaBZHQJ+nW4YrJ8x1fZQoaAZoCWgPQwimY84z9pVeQJSGlFKUaBVN6ANoFkdAn7KEcKgIyHV9lChoBmgJaA9DCL5KPnaXrWFAlIaUUpRoFU3oA2gWR0Cfs+gmJFb3dX2UKGgGaAloD0MIehhanZx2YkCUhpRSlGgVTegDaBZHQJ+1Eb70nPV1fZQoaAZoCWgPQwjrc7UVe7VkQJSGlFKUaBVN6ANoFkdAn7djER8MNXV9lChoBmgJaA9DCO4/Mh26x2JAlIaUUpRoFU3oA2gWR0Cft4hWo3rEdX2UKGgGaAloD0MIJ8Eb0qg9ZUCUhpRSlGgVTegDaBZHQJ+4Y9+w1SB1fZQoaAZoCWgPQwgBpgwc0PRNQJSGlFKUaBVLnGgWR0CfwhaP0Zm7dX2UKGgGaAloD0MIByXMtP1LZECUhpRSlGgVTegDaBZHQJ/CgzoEB8x1fZQoaAZoCWgPQwhgzJasCphiQJSGlFKUaBVN6ANoFkdAn8kvzJ6ppHV9lChoBmgJaA9DCPIHA8+9vmNAlIaUUpRoFU3oA2gWR0Cfy+SEUTL4dX2UKGgGaAloD0MIcHuCxPbfYUCUhpRSlGgVTegDaBZHQJ/NtuivgWJ1fZQoaAZoCWgPQwj0+L1Nf5liQJSGlFKUaBVN6ANoFkdAn83YrFwT/XV9lChoBmgJaA9DCAhXQKGedWVAlIaUUpRoFU3oA2gWR0Cfz3GdqcmTdX2UKGgGaAloD0MIZylZTsJZYECUhpRSlGgVTegDaBZHQJ/UwVXV9Wp1fZQoaAZoCWgPQwi5VRADXelCQJSGlFKUaBVLvmgWR0Cf19jghr31dX2UKGgGaAloD0MIXW+bqZCyYkCUhpRSlGgVTegDaBZHQJ/ab1oQFs51fZQoaAZoCWgPQwj+1HjpptJkQJSGlFKUaBVN6ANoFkdAoB+1vl2eQXV9lChoBmgJaA9DCKNcGr/wvGRAlIaUUpRoFU3oA2gWR0CgIPRjriVCdX2UKGgGaAloD0MIFEIHXUJiYkCUhpRSlGgVTegDaBZHQKAmVf642CN1fZQoaAZoCWgPQwi7mGa6V9FlQJSGlFKUaBVN6ANoFkdAoCcBFd9lVnV9lChoBmgJaA9DCA8mxccnXGlAlIaUUpRoFU3oA2gWR0CgJ5TI3irDdX2UKGgGaAloD0MIVcGopE6aYUCUhpRSlGgVTegDaBZHQKAoyNFz+3p1fZQoaAZoCWgPQwg8a7ddaLZmQJSGlFKUaBVN6ANoFkdAoCjao4uK43V9lChoBmgJaA9DCJYgI6BCa2RAlIaUUpRoFU3oA2gWR0CgLpMKkVN6dX2UKGgGaAloD0MIiSXl7vP9YkCUhpRSlGgVTegDaBZHQKAuyCzTnaF1fZQoaAZoCWgPQwhPBHEezthnQJSGlFKUaBVN6ANoFkdAoDJAZCOWB3V9lChoBmgJaA9DCHlcVIsI7GNAlIaUUpRoFU3oA2gWR0CgNH8PFvQ4dX2UKGgGaAloD0MIVPzfEZUxZkCUhpRSlGgVTegDaBZHQKA0lOP/7zl1fZQoaAZoCWgPQwgt7dRc7jtlQJSGlFKUaBVN6ANoFkdAoDVq08eS0XV9lChoBmgJaA9DCFHYRdEDSGJAlIaUUpRoFU3oA2gWR0CgOFc580DVdX2UKGgGaAloD0MIBg39E1ykZUCUhpRSlGgVTegDaBZHQKA5/Cw8nu11fZQoaAZoCWgPQwhHWb+ZmG5OQJSGlFKUaBVLxWgWR0CgOzb0WdmQdX2UKGgGaAloD0MIU67wLpc9Y0CUhpRSlGgVTegDaBZHQKA7UmtQsPJ1fZQoaAZoCWgPQwhMcOoDyd1jQJSGlFKUaBVN6ANoFkdAoGzj2exwAHV9lChoBmgJaA9DCOW2fY/6dmhAlIaUUpRoFU3oA2gWR0Cgbhf7zkIYdX2UKGgGaAloD0MIvVKWIY5wYUCUhpRSlGgVTegDaBZHQKBy9655JK91fZQoaAZoCWgPQwjmsPuO4fNOQJSGlFKUaBVLuWgWR0Cgc19onKGMdX2UKGgGaAloD0MIwf7r3LQbZUCUhpRSlGgVTegDaBZHQKBzlqnFYMh1fZQoaAZoCWgPQwhig4WTtMpiQJSGlFKUaBVN6ANoFkdAoHQh+vyLAHV9lChoBmgJaA9DCNJwytz8uGJAlIaUUpRoFU3oA2gWR0CgdTFtKqXGdX2UKGgGaAloD0MI/U/+7h0+ZUCUhpRSlGgVTegDaBZHQKB1QOfdykt1fZQoaAZoCWgPQwiOBvAWyDFiQJSGlFKUaBVN6ANoFkdAoHqkD6nBL3V9lChoBmgJaA9DCCRgdHnzvmVAlIaUUpRoFU3oA2gWR0CgetaCL/CJdX2UKGgGaAloD0MIPiMRGkE+Z0CUhpRSlGgVTegDaBZHQKB+RuIAOrh1fZQoaAZoCWgPQwjjiSDOwxtlQJSGlFKUaBVN6ANoFkdAoICJ1gYxcnV9lChoBmgJaA9DCDC7Jw8Lc0hAlIaUUpRoFUvBaBZHQKCBN7kXDWN1fZQoaAZoCWgPQwimme51UsBhQJSGlFKUaBVN6ANoFkdAoIF8ZgogFHV9lChoBmgJaA9DCH6K48ArqmNAlIaUUpRoFU3oA2gWR0CghFw9ic5KdX2UKGgGaAloD0MIdeYeEr5oZUCUhpRSlGgVTegDaBZHQKCF660Y0l91fZQoaAZoCWgPQwiSzsDIS2VnQJSGlFKUaBVN6ANoFkdAoIcYLZzxPXV9lChoBmgJaA9DCNswCoLHDWhAlIaUUpRoFU3oA2gWR0CghzPaL4vfdX2UKGgGaAloD0MIvHfUmBADTkCUhpRSlGgVS7loFkdAoLcKJhvzfHV9lChoBmgJaA9DCH+hR4weMGVAlIaUUpRoFU3oA2gWR0CguV9jwx33dX2UKGgGaAloD0MIuaZAZmeLXkCUhpRSlGgVTegDaBZHQKC+luCwr2B1fZQoaAZoCWgPQwhK8IY0KnlhQJSGlFKUaBVN6ANoFkdAoL8HaFmFrXV9lChoBmgJaA9DCNFcp5EWt2lAlIaUUpRoFU3oA2gWR0Cgvz8c2itadX2UKGgGaAloD0MIvOtsyD9SXkCUhpRSlGgVTegDaBZHQKC/0rLhaTx1fZQoaAZoCWgPQwgzTkNUYblnQJSGlFKUaBVN6ANoFkdAoMDyBwuM/HV9lChoBmgJaA9DCHpsy4Az3mVAlIaUUpRoFU3oA2gWR0CgwQOmzjWDdX2UKGgGaAloD0MI+1dWmpTIRkCUhpRSlGgVS5RoFkdAoMXUQCjk/HV9lChoBmgJaA9DCGt/Z3t0G2RAlIaUUpRoFU3oA2gWR0Cgxu0Ltu1ndX2UKGgGaAloD0MIsWoQ5nZSZUCUhpRSlGgVTegDaBZHQKDKzLV4HHF1fZQoaAZoCWgPQwjEIRtIFwNIQJSGlFKUaBVLmmgWR0Cgy7KTSsr/dX2UKGgGaAloD0MIVyWRfZDcZUCUhpRSlGgVTegDaBZHQKDNYohIOH51fZQoaAZoCWgPQwhS7j7Hx7FjQJSGlFKUaBVN6ANoFkdAoM4r3wkPc3V9lChoBmgJaA9DCIYeMXruRmJAlIaUUpRoFU3oA2gWR0CgznaE8JUpdX2UKGgGaAloD0MIXwoPml1PZECUhpRSlGgVTegDaBZHQKDRhlyzXz11fZQoaAZoCWgPQwjdeHdkLCpkQJSGlFKUaBVN6ANoFkdAoNMrebd8A3V9lChoBmgJaA9DCIf4hy09wGJAlIaUUpRoFU3oA2gWR0Cg1Htzr/sFdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 310,
79
+ "n_steps": 1024,
80
+ "gamma": 0.995,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27d494334e8d261fb5fdf76cc91d8f811ab418c83eab48c1cef3a748a42d2582
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a19f2fb6c5915d522f92bc557908c2d99658375573da592ca8d3a8a4a353a6f
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05257740ade2b658f9b0fa0b8f58652f1428f865b11ff9958c999785f7590750
3
+ size 232103
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 255.981866427774, "std_reward": 35.51801297831905, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T17:14:38.489362"}