Initial attempt
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- model1st.mod +0 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 255.98 +/- 35.52
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f45eacda4d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45eacda560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45eacda5f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45eacda680>", "_build": "<function ActorCriticPolicy._build at 0x7f45eacda710>", "forward": "<function ActorCriticPolicy.forward at 0x7f45eacda7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45eacda830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f45eacda8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45eacda950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45eacda9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45eacdaa70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f45ead20b10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651941927.8815582, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADc/LuPxjq6BlKpOk0uGLaVNys5nznEuQAAgD8AAIA/GjdHPRREgbqIwny7hxOAOLgQpjp3UAw6AACAPwAAgD8AqLk9KeAJugh4kLtKvZk4MDjKOnzuLTkAAIA/AACAP1rPmT1SuJq3lrz4N2Yeqq9MyR478goWtwAAgD8AAIA/5vCBPVwrKboN7RE8yUqvNg3LULl+lao1AACAPwAAgD8A6pY8UgCAuWWMhLq+8wS2h5heOpUmnjkAAIA/AACAP8a3WT7u24o+i5m2vU6Ypr4Uhh89J6OJvAAAAAAAAAAA5t0KPVKu47uydCa88vyaPIT1Rb2L3oE9AACAPwAAgD8AFMm7e5CFuu66M7gxqKWzn3AHOxPITTcAAIA/AACAP5qluD1cKT28pTPRu5ZMtDyUn6W95oSSPQAAgD8AAAAAQLqDvVJw8bk9l4Y6gWKpNWcq0Tqe2525AACAPwAAgD8zyvw89tw1uoIKGrpkmQ21Z7VIum43NjkAAIA/AACAPwDzqTzsyZW5wIhrOy1I5TbECMG6KGKIugAAgD8AAIA/muO7vezJwrk6m1s8w3K3NN24vLqkc5YzAACAPwAAgD/NtC08hfvWudN9U7oK/lO290JsO9ZMdjkAAIA/AACAP41qrj0UirO6SzLlOxtyTjnUsCA7GdCBugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0v2cgvxnY0CUhpRSlIwBbJRN6AOMAXSUR0CeeWJwKjSHdX2UKGgGaAloD0MISWdg5GWYYkCUhpRSlGgVTegDaBZHQJ6BYYLsrup1fZQoaAZoCWgPQwj3rkFfertmQJSGlFKUaBVN6ANoFkdAnoUXVkMCtHV9lChoBmgJaA9DCDf6mA8I1GFAlIaUUpRoFU3oA2gWR0CejKvlU6xPdX2UKGgGaAloD0MIoWXdPxYhYECUhpRSlGgVTegDaBZHQJ6RvYTTOPh1fZQoaAZoCWgPQwiyLJj4I0dgQJSGlFKUaBVN6ANoFkdAnpHnoX9BKXV9lChoBmgJaA9DCJDaxMl9n2JAlIaUUpRoFU3oA2gWR0Cek9R2r4nGdX2UKGgGaAloD0MIS1mGONauZUCUhpRSlGgVTegDaBZHQJ6aBbMX7+F1fZQoaAZoCWgPQwibq+Y5IrFjQJSGlFKUaBVN6ANoFkdAnqC5lWfbsXV9lChoBmgJaA9DCBlW8UbmP2VAlIaUUpRoFU3oA2gWR0Ce+8mzByjpdX2UKGgGaAloD0MIOj3vxoLkZECUhpRSlGgVTegDaBZHQJ8HbzqbBoF1fZQoaAZoCWgPQwhZhc0AF2NkQJSGlFKUaBVN6ANoFkdAnweHd0q6OHV9lChoBmgJaA9DCAsm/ijqW2BAlIaUUpRoFU3oA2gWR0CfCd6yjYZmdX2UKGgGaAloD0MIh8Woa+29NUCUhpRSlGgVS7poFkdAnwoU4rBj4HV9lChoBmgJaA9DCFWFBmLZmkxAlIaUUpRoFUusaBZHQJ8Txjx0+1V1fZQoaAZoCWgPQwiVYHE484NIQJSGlFKUaBVLm2gWR0CfFR8gpz91dX2UKGgGaAloD0MIpFUt6SjYZECUhpRSlGgVTegDaBZHQJ8WT4EfT1F1fZQoaAZoCWgPQwh+q3XicoxlQJSGlFKUaBVN6ANoFkdAnxjOO4oZynV9lChoBmgJaA9DCNfc0f/yN2JAlIaUUpRoFU3oA2gWR0CfGPVtGd7OdX2UKGgGaAloD0MIs874vrgzZUCUhpRSlGgVTegDaBZHQJ8Z8L8aXKN1fZQoaAZoCWgPQwjRevgy0UxkQJSGlFKUaBVN6ANoFkdAnyC0hRqGlHV9lChoBmgJaA9DCHbexmbHc2JAlIaUUpRoFU3oA2gWR0CfI/4FA3UAdX2UKGgGaAloD0MIB5eOOc+EaECUhpRSlGgVTegDaBZHQJ8q5JqZc9p1fZQoaAZoCWgPQwioxeBh2tcFQJSGlFKUaBVLv2gWR0CfLbu8brC4dX2UKGgGaAloD0MIRSxi2OEqZkCUhpRSlGgVTegDaBZHQJ8vwPRRdhR1fZQoaAZoCWgPQwix4emVMp5jQJSGlFKUaBVN6ANoFkdAny/mzjWCmXV9lChoBmgJaA9DCLqhKTt93GNAlIaUUpRoFU3oA2gWR0CfMa4oZydXdX2UKGgGaAloD0MII74Ts14oYkCUhpRSlGgVTegDaBZHQJ83n3ta6jF1fZQoaAZoCWgPQwiRfvs6cL1kQJSGlFKUaBVN6ANoFkdAnz3PcvduYXV9lChoBmgJaA9DCJwVURN9oV1AlIaUUpRoFU3oA2gWR0CfpK5oXbdrdX2UKGgGaAloD0MIFajF4GGsakCUhpRSlGgVTegDaBZHQJ+nW4YrJ8x1fZQoaAZoCWgPQwimY84z9pVeQJSGlFKUaBVN6ANoFkdAn7KEcKgIyHV9lChoBmgJaA9DCL5KPnaXrWFAlIaUUpRoFU3oA2gWR0Cfs+gmJFb3dX2UKGgGaAloD0MIehhanZx2YkCUhpRSlGgVTegDaBZHQJ+1Eb70nPV1fZQoaAZoCWgPQwjrc7UVe7VkQJSGlFKUaBVN6ANoFkdAn7djER8MNXV9lChoBmgJaA9DCO4/Mh26x2JAlIaUUpRoFU3oA2gWR0Cft4hWo3rEdX2UKGgGaAloD0MIJ8Eb0qg9ZUCUhpRSlGgVTegDaBZHQJ+4Y9+w1SB1fZQoaAZoCWgPQwgBpgwc0PRNQJSGlFKUaBVLnGgWR0CfwhaP0Zm7dX2UKGgGaAloD0MIByXMtP1LZECUhpRSlGgVTegDaBZHQJ/CgzoEB8x1fZQoaAZoCWgPQwhgzJasCphiQJSGlFKUaBVN6ANoFkdAn8kvzJ6ppHV9lChoBmgJaA9DCPIHA8+9vmNAlIaUUpRoFU3oA2gWR0Cfy+SEUTL4dX2UKGgGaAloD0MIcHuCxPbfYUCUhpRSlGgVTegDaBZHQJ/NtuivgWJ1fZQoaAZoCWgPQwj0+L1Nf5liQJSGlFKUaBVN6ANoFkdAn83YrFwT/XV9lChoBmgJaA9DCAhXQKGedWVAlIaUUpRoFU3oA2gWR0Cfz3GdqcmTdX2UKGgGaAloD0MIZylZTsJZYECUhpRSlGgVTegDaBZHQJ/UwVXV9Wp1fZQoaAZoCWgPQwi5VRADXelCQJSGlFKUaBVLvmgWR0Cf19jghr31dX2UKGgGaAloD0MIXW+bqZCyYkCUhpRSlGgVTegDaBZHQJ/ab1oQFs51fZQoaAZoCWgPQwj+1HjpptJkQJSGlFKUaBVN6ANoFkdAoB+1vl2eQXV9lChoBmgJaA9DCKNcGr/wvGRAlIaUUpRoFU3oA2gWR0CgIPRjriVCdX2UKGgGaAloD0MIFEIHXUJiYkCUhpRSlGgVTegDaBZHQKAmVf642CN1fZQoaAZoCWgPQwi7mGa6V9FlQJSGlFKUaBVN6ANoFkdAoCcBFd9lVnV9lChoBmgJaA9DCA8mxccnXGlAlIaUUpRoFU3oA2gWR0CgJ5TI3irDdX2UKGgGaAloD0MIVcGopE6aYUCUhpRSlGgVTegDaBZHQKAoyNFz+3p1fZQoaAZoCWgPQwg8a7ddaLZmQJSGlFKUaBVN6ANoFkdAoCjao4uK43V9lChoBmgJaA9DCJYgI6BCa2RAlIaUUpRoFU3oA2gWR0CgLpMKkVN6dX2UKGgGaAloD0MIiSXl7vP9YkCUhpRSlGgVTegDaBZHQKAuyCzTnaF1fZQoaAZoCWgPQwhPBHEezthnQJSGlFKUaBVN6ANoFkdAoDJAZCOWB3V9lChoBmgJaA9DCHlcVIsI7GNAlIaUUpRoFU3oA2gWR0CgNH8PFvQ4dX2UKGgGaAloD0MIVPzfEZUxZkCUhpRSlGgVTegDaBZHQKA0lOP/7zl1fZQoaAZoCWgPQwgt7dRc7jtlQJSGlFKUaBVN6ANoFkdAoDVq08eS0XV9lChoBmgJaA9DCFHYRdEDSGJAlIaUUpRoFU3oA2gWR0CgOFc580DVdX2UKGgGaAloD0MIBg39E1ykZUCUhpRSlGgVTegDaBZHQKA5/Cw8nu11fZQoaAZoCWgPQwhHWb+ZmG5OQJSGlFKUaBVLxWgWR0CgOzb0WdmQdX2UKGgGaAloD0MIU67wLpc9Y0CUhpRSlGgVTegDaBZHQKA7UmtQsPJ1fZQoaAZoCWgPQwhMcOoDyd1jQJSGlFKUaBVN6ANoFkdAoGzj2exwAHV9lChoBmgJaA9DCOW2fY/6dmhAlIaUUpRoFU3oA2gWR0Cgbhf7zkIYdX2UKGgGaAloD0MIvVKWIY5wYUCUhpRSlGgVTegDaBZHQKBy9655JK91fZQoaAZoCWgPQwjmsPuO4fNOQJSGlFKUaBVLuWgWR0Cgc19onKGMdX2UKGgGaAloD0MIwf7r3LQbZUCUhpRSlGgVTegDaBZHQKBzlqnFYMh1fZQoaAZoCWgPQwhig4WTtMpiQJSGlFKUaBVN6ANoFkdAoHQh+vyLAHV9lChoBmgJaA9DCNJwytz8uGJAlIaUUpRoFU3oA2gWR0CgdTFtKqXGdX2UKGgGaAloD0MI/U/+7h0+ZUCUhpRSlGgVTegDaBZHQKB1QOfdykt1fZQoaAZoCWgPQwiOBvAWyDFiQJSGlFKUaBVN6ANoFkdAoHqkD6nBL3V9lChoBmgJaA9DCCRgdHnzvmVAlIaUUpRoFU3oA2gWR0CgetaCL/CJdX2UKGgGaAloD0MIPiMRGkE+Z0CUhpRSlGgVTegDaBZHQKB+RuIAOrh1fZQoaAZoCWgPQwjjiSDOwxtlQJSGlFKUaBVN6ANoFkdAoICJ1gYxcnV9lChoBmgJaA9DCDC7Jw8Lc0hAlIaUUpRoFUvBaBZHQKCBN7kXDWN1fZQoaAZoCWgPQwimme51UsBhQJSGlFKUaBVN6ANoFkdAoIF8ZgogFHV9lChoBmgJaA9DCH6K48ArqmNAlIaUUpRoFU3oA2gWR0CghFw9ic5KdX2UKGgGaAloD0MIdeYeEr5oZUCUhpRSlGgVTegDaBZHQKCF660Y0l91fZQoaAZoCWgPQwiSzsDIS2VnQJSGlFKUaBVN6ANoFkdAoIcYLZzxPXV9lChoBmgJaA9DCNswCoLHDWhAlIaUUpRoFU3oA2gWR0CghzPaL4vfdX2UKGgGaAloD0MIvHfUmBADTkCUhpRSlGgVS7loFkdAoLcKJhvzfHV9lChoBmgJaA9DCH+hR4weMGVAlIaUUpRoFU3oA2gWR0CguV9jwx33dX2UKGgGaAloD0MIuaZAZmeLXkCUhpRSlGgVTegDaBZHQKC+luCwr2B1fZQoaAZoCWgPQwhK8IY0KnlhQJSGlFKUaBVN6ANoFkdAoL8HaFmFrXV9lChoBmgJaA9DCNFcp5EWt2lAlIaUUpRoFU3oA2gWR0Cgvz8c2itadX2UKGgGaAloD0MIvOtsyD9SXkCUhpRSlGgVTegDaBZHQKC/0rLhaTx1fZQoaAZoCWgPQwgzTkNUYblnQJSGlFKUaBVN6ANoFkdAoMDyBwuM/HV9lChoBmgJaA9DCHpsy4Az3mVAlIaUUpRoFU3oA2gWR0CgwQOmzjWDdX2UKGgGaAloD0MI+1dWmpTIRkCUhpRSlGgVS5RoFkdAoMXUQCjk/HV9lChoBmgJaA9DCGt/Z3t0G2RAlIaUUpRoFU3oA2gWR0Cgxu0Ltu1ndX2UKGgGaAloD0MIsWoQ5nZSZUCUhpRSlGgVTegDaBZHQKDKzLV4HHF1fZQoaAZoCWgPQwjEIRtIFwNIQJSGlFKUaBVLmmgWR0Cgy7KTSsr/dX2UKGgGaAloD0MIVyWRfZDcZUCUhpRSlGgVTegDaBZHQKDNYohIOH51fZQoaAZoCWgPQwhS7j7Hx7FjQJSGlFKUaBVN6ANoFkdAoM4r3wkPc3V9lChoBmgJaA9DCIYeMXruRmJAlIaUUpRoFU3oA2gWR0CgznaE8JUpdX2UKGgGaAloD0MIXwoPml1PZECUhpRSlGgVTegDaBZHQKDRhlyzXz11fZQoaAZoCWgPQwjdeHdkLCpkQJSGlFKUaBVN6ANoFkdAoNMrebd8A3V9lChoBmgJaA9DCIf4hy09wGJAlIaUUpRoFU3oA2gWR0Cg1Htzr/sFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
model1st.mod
ADDED
Binary file (144 kB). View file
|
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9b76af5b097a41d5ef823b23ee38bd40ebb0d1df2bf086e82a552930a1857e5
|
3 |
+
size 144099
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f45eacda4d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45eacda560>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45eacda5f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45eacda680>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f45eacda710>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f45eacda7a0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45eacda830>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f45eacda8c0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45eacda950>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45eacda9e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45eacdaa70>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f45ead20b10>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651941927.8815582,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADc/LuPxjq6BlKpOk0uGLaVNys5nznEuQAAgD8AAIA/GjdHPRREgbqIwny7hxOAOLgQpjp3UAw6AACAPwAAgD8AqLk9KeAJugh4kLtKvZk4MDjKOnzuLTkAAIA/AACAP1rPmT1SuJq3lrz4N2Yeqq9MyR478goWtwAAgD8AAIA/5vCBPVwrKboN7RE8yUqvNg3LULl+lao1AACAPwAAgD8A6pY8UgCAuWWMhLq+8wS2h5heOpUmnjkAAIA/AACAP8a3WT7u24o+i5m2vU6Ypr4Uhh89J6OJvAAAAAAAAAAA5t0KPVKu47uydCa88vyaPIT1Rb2L3oE9AACAPwAAgD8AFMm7e5CFuu66M7gxqKWzn3AHOxPITTcAAIA/AACAP5qluD1cKT28pTPRu5ZMtDyUn6W95oSSPQAAgD8AAAAAQLqDvVJw8bk9l4Y6gWKpNWcq0Tqe2525AACAPwAAgD8zyvw89tw1uoIKGrpkmQ21Z7VIum43NjkAAIA/AACAPwDzqTzsyZW5wIhrOy1I5TbECMG6KGKIugAAgD8AAIA/muO7vezJwrk6m1s8w3K3NN24vLqkc5YzAACAPwAAgD/NtC08hfvWudN9U7oK/lO290JsO9ZMdjkAAIA/AACAP41qrj0UirO6SzLlOxtyTjnUsCA7GdCBugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0v2cgvxnY0CUhpRSlIwBbJRN6AOMAXSUR0CeeWJwKjSHdX2UKGgGaAloD0MISWdg5GWYYkCUhpRSlGgVTegDaBZHQJ6BYYLsrup1fZQoaAZoCWgPQwj3rkFfertmQJSGlFKUaBVN6ANoFkdAnoUXVkMCtHV9lChoBmgJaA9DCDf6mA8I1GFAlIaUUpRoFU3oA2gWR0CejKvlU6xPdX2UKGgGaAloD0MIoWXdPxYhYECUhpRSlGgVTegDaBZHQJ6RvYTTOPh1fZQoaAZoCWgPQwiyLJj4I0dgQJSGlFKUaBVN6ANoFkdAnpHnoX9BKXV9lChoBmgJaA9DCJDaxMl9n2JAlIaUUpRoFU3oA2gWR0Cek9R2r4nGdX2UKGgGaAloD0MIS1mGONauZUCUhpRSlGgVTegDaBZHQJ6aBbMX7+F1fZQoaAZoCWgPQwibq+Y5IrFjQJSGlFKUaBVN6ANoFkdAnqC5lWfbsXV9lChoBmgJaA9DCBlW8UbmP2VAlIaUUpRoFU3oA2gWR0Ce+8mzByjpdX2UKGgGaAloD0MIOj3vxoLkZECUhpRSlGgVTegDaBZHQJ8HbzqbBoF1fZQoaAZoCWgPQwhZhc0AF2NkQJSGlFKUaBVN6ANoFkdAnweHd0q6OHV9lChoBmgJaA9DCAsm/ijqW2BAlIaUUpRoFU3oA2gWR0CfCd6yjYZmdX2UKGgGaAloD0MIh8Woa+29NUCUhpRSlGgVS7poFkdAnwoU4rBj4HV9lChoBmgJaA9DCFWFBmLZmkxAlIaUUpRoFUusaBZHQJ8Txjx0+1V1fZQoaAZoCWgPQwiVYHE484NIQJSGlFKUaBVLm2gWR0CfFR8gpz91dX2UKGgGaAloD0MIpFUt6SjYZECUhpRSlGgVTegDaBZHQJ8WT4EfT1F1fZQoaAZoCWgPQwh+q3XicoxlQJSGlFKUaBVN6ANoFkdAnxjOO4oZynV9lChoBmgJaA9DCNfc0f/yN2JAlIaUUpRoFU3oA2gWR0CfGPVtGd7OdX2UKGgGaAloD0MIs874vrgzZUCUhpRSlGgVTegDaBZHQJ8Z8L8aXKN1fZQoaAZoCWgPQwjRevgy0UxkQJSGlFKUaBVN6ANoFkdAnyC0hRqGlHV9lChoBmgJaA9DCHbexmbHc2JAlIaUUpRoFU3oA2gWR0CfI/4FA3UAdX2UKGgGaAloD0MIB5eOOc+EaECUhpRSlGgVTegDaBZHQJ8q5JqZc9p1fZQoaAZoCWgPQwioxeBh2tcFQJSGlFKUaBVLv2gWR0CfLbu8brC4dX2UKGgGaAloD0MIRSxi2OEqZkCUhpRSlGgVTegDaBZHQJ8vwPRRdhR1fZQoaAZoCWgPQwix4emVMp5jQJSGlFKUaBVN6ANoFkdAny/mzjWCmXV9lChoBmgJaA9DCLqhKTt93GNAlIaUUpRoFU3oA2gWR0CfMa4oZydXdX2UKGgGaAloD0MII74Ts14oYkCUhpRSlGgVTegDaBZHQJ83n3ta6jF1fZQoaAZoCWgPQwiRfvs6cL1kQJSGlFKUaBVN6ANoFkdAnz3PcvduYXV9lChoBmgJaA9DCJwVURN9oV1AlIaUUpRoFU3oA2gWR0CfpK5oXbdrdX2UKGgGaAloD0MIFajF4GGsakCUhpRSlGgVTegDaBZHQJ+nW4YrJ8x1fZQoaAZoCWgPQwimY84z9pVeQJSGlFKUaBVN6ANoFkdAn7KEcKgIyHV9lChoBmgJaA9DCL5KPnaXrWFAlIaUUpRoFU3oA2gWR0Cfs+gmJFb3dX2UKGgGaAloD0MIehhanZx2YkCUhpRSlGgVTegDaBZHQJ+1Eb70nPV1fZQoaAZoCWgPQwjrc7UVe7VkQJSGlFKUaBVN6ANoFkdAn7djER8MNXV9lChoBmgJaA9DCO4/Mh26x2JAlIaUUpRoFU3oA2gWR0Cft4hWo3rEdX2UKGgGaAloD0MIJ8Eb0qg9ZUCUhpRSlGgVTegDaBZHQJ+4Y9+w1SB1fZQoaAZoCWgPQwgBpgwc0PRNQJSGlFKUaBVLnGgWR0CfwhaP0Zm7dX2UKGgGaAloD0MIByXMtP1LZECUhpRSlGgVTegDaBZHQJ/CgzoEB8x1fZQoaAZoCWgPQwhgzJasCphiQJSGlFKUaBVN6ANoFkdAn8kvzJ6ppHV9lChoBmgJaA9DCPIHA8+9vmNAlIaUUpRoFU3oA2gWR0Cfy+SEUTL4dX2UKGgGaAloD0MIcHuCxPbfYUCUhpRSlGgVTegDaBZHQJ/NtuivgWJ1fZQoaAZoCWgPQwj0+L1Nf5liQJSGlFKUaBVN6ANoFkdAn83YrFwT/XV9lChoBmgJaA9DCAhXQKGedWVAlIaUUpRoFU3oA2gWR0Cfz3GdqcmTdX2UKGgGaAloD0MIZylZTsJZYECUhpRSlGgVTegDaBZHQJ/UwVXV9Wp1fZQoaAZoCWgPQwi5VRADXelCQJSGlFKUaBVLvmgWR0Cf19jghr31dX2UKGgGaAloD0MIXW+bqZCyYkCUhpRSlGgVTegDaBZHQJ/ab1oQFs51fZQoaAZoCWgPQwj+1HjpptJkQJSGlFKUaBVN6ANoFkdAoB+1vl2eQXV9lChoBmgJaA9DCKNcGr/wvGRAlIaUUpRoFU3oA2gWR0CgIPRjriVCdX2UKGgGaAloD0MIFEIHXUJiYkCUhpRSlGgVTegDaBZHQKAmVf642CN1fZQoaAZoCWgPQwi7mGa6V9FlQJSGlFKUaBVN6ANoFkdAoCcBFd9lVnV9lChoBmgJaA9DCA8mxccnXGlAlIaUUpRoFU3oA2gWR0CgJ5TI3irDdX2UKGgGaAloD0MIVcGopE6aYUCUhpRSlGgVTegDaBZHQKAoyNFz+3p1fZQoaAZoCWgPQwg8a7ddaLZmQJSGlFKUaBVN6ANoFkdAoCjao4uK43V9lChoBmgJaA9DCJYgI6BCa2RAlIaUUpRoFU3oA2gWR0CgLpMKkVN6dX2UKGgGaAloD0MIiSXl7vP9YkCUhpRSlGgVTegDaBZHQKAuyCzTnaF1fZQoaAZoCWgPQwhPBHEezthnQJSGlFKUaBVN6ANoFkdAoDJAZCOWB3V9lChoBmgJaA9DCHlcVIsI7GNAlIaUUpRoFU3oA2gWR0CgNH8PFvQ4dX2UKGgGaAloD0MIVPzfEZUxZkCUhpRSlGgVTegDaBZHQKA0lOP/7zl1fZQoaAZoCWgPQwgt7dRc7jtlQJSGlFKUaBVN6ANoFkdAoDVq08eS0XV9lChoBmgJaA9DCFHYRdEDSGJAlIaUUpRoFU3oA2gWR0CgOFc580DVdX2UKGgGaAloD0MIBg39E1ykZUCUhpRSlGgVTegDaBZHQKA5/Cw8nu11fZQoaAZoCWgPQwhHWb+ZmG5OQJSGlFKUaBVLxWgWR0CgOzb0WdmQdX2UKGgGaAloD0MIU67wLpc9Y0CUhpRSlGgVTegDaBZHQKA7UmtQsPJ1fZQoaAZoCWgPQwhMcOoDyd1jQJSGlFKUaBVN6ANoFkdAoGzj2exwAHV9lChoBmgJaA9DCOW2fY/6dmhAlIaUUpRoFU3oA2gWR0Cgbhf7zkIYdX2UKGgGaAloD0MIvVKWIY5wYUCUhpRSlGgVTegDaBZHQKBy9655JK91fZQoaAZoCWgPQwjmsPuO4fNOQJSGlFKUaBVLuWgWR0Cgc19onKGMdX2UKGgGaAloD0MIwf7r3LQbZUCUhpRSlGgVTegDaBZHQKBzlqnFYMh1fZQoaAZoCWgPQwhig4WTtMpiQJSGlFKUaBVN6ANoFkdAoHQh+vyLAHV9lChoBmgJaA9DCNJwytz8uGJAlIaUUpRoFU3oA2gWR0CgdTFtKqXGdX2UKGgGaAloD0MI/U/+7h0+ZUCUhpRSlGgVTegDaBZHQKB1QOfdykt1fZQoaAZoCWgPQwiOBvAWyDFiQJSGlFKUaBVN6ANoFkdAoHqkD6nBL3V9lChoBmgJaA9DCCRgdHnzvmVAlIaUUpRoFU3oA2gWR0CgetaCL/CJdX2UKGgGaAloD0MIPiMRGkE+Z0CUhpRSlGgVTegDaBZHQKB+RuIAOrh1fZQoaAZoCWgPQwjjiSDOwxtlQJSGlFKUaBVN6ANoFkdAoICJ1gYxcnV9lChoBmgJaA9DCDC7Jw8Lc0hAlIaUUpRoFUvBaBZHQKCBN7kXDWN1fZQoaAZoCWgPQwimme51UsBhQJSGlFKUaBVN6ANoFkdAoIF8ZgogFHV9lChoBmgJaA9DCH6K48ArqmNAlIaUUpRoFU3oA2gWR0CghFw9ic5KdX2UKGgGaAloD0MIdeYeEr5oZUCUhpRSlGgVTegDaBZHQKCF660Y0l91fZQoaAZoCWgPQwiSzsDIS2VnQJSGlFKUaBVN6ANoFkdAoIcYLZzxPXV9lChoBmgJaA9DCNswCoLHDWhAlIaUUpRoFU3oA2gWR0CghzPaL4vfdX2UKGgGaAloD0MIvHfUmBADTkCUhpRSlGgVS7loFkdAoLcKJhvzfHV9lChoBmgJaA9DCH+hR4weMGVAlIaUUpRoFU3oA2gWR0CguV9jwx33dX2UKGgGaAloD0MIuaZAZmeLXkCUhpRSlGgVTegDaBZHQKC+luCwr2B1fZQoaAZoCWgPQwhK8IY0KnlhQJSGlFKUaBVN6ANoFkdAoL8HaFmFrXV9lChoBmgJaA9DCNFcp5EWt2lAlIaUUpRoFU3oA2gWR0Cgvz8c2itadX2UKGgGaAloD0MIvOtsyD9SXkCUhpRSlGgVTegDaBZHQKC/0rLhaTx1fZQoaAZoCWgPQwgzTkNUYblnQJSGlFKUaBVN6ANoFkdAoMDyBwuM/HV9lChoBmgJaA9DCHpsy4Az3mVAlIaUUpRoFU3oA2gWR0CgwQOmzjWDdX2UKGgGaAloD0MI+1dWmpTIRkCUhpRSlGgVS5RoFkdAoMXUQCjk/HV9lChoBmgJaA9DCGt/Z3t0G2RAlIaUUpRoFU3oA2gWR0Cgxu0Ltu1ndX2UKGgGaAloD0MIsWoQ5nZSZUCUhpRSlGgVTegDaBZHQKDKzLV4HHF1fZQoaAZoCWgPQwjEIRtIFwNIQJSGlFKUaBVLmmgWR0Cgy7KTSsr/dX2UKGgGaAloD0MIVyWRfZDcZUCUhpRSlGgVTegDaBZHQKDNYohIOH51fZQoaAZoCWgPQwhS7j7Hx7FjQJSGlFKUaBVN6ANoFkdAoM4r3wkPc3V9lChoBmgJaA9DCIYeMXruRmJAlIaUUpRoFU3oA2gWR0CgznaE8JUpdX2UKGgGaAloD0MIXwoPml1PZECUhpRSlGgVTegDaBZHQKDRhlyzXz11fZQoaAZoCWgPQwjdeHdkLCpkQJSGlFKUaBVN6ANoFkdAoNMrebd8A3V9lChoBmgJaA9DCIf4hy09wGJAlIaUUpRoFU3oA2gWR0Cg1Htzr/sFdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 310,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.995,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27d494334e8d261fb5fdf76cc91d8f811ab418c83eab48c1cef3a748a42d2582
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a19f2fb6c5915d522f92bc557908c2d99658375573da592ca8d3a8a4a353a6f
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05257740ade2b658f9b0fa0b8f58652f1428f865b11ff9958c999785f7590750
|
3 |
+
size 232103
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 255.981866427774, "std_reward": 35.51801297831905, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T17:14:38.489362"}
|