angelinux commited on
Commit
083b403
1 Parent(s): 0f0f63b

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.98 +/- 0.53
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f59a3c866a54772d70db9223aa3d1f102a64c5b24571430412585c9e48583e8
3
+ size 108011
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f095c1f0af0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f095c1ec8d0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1677744324805659652,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjZvGPuYEFTzhvwM/jZvGPuYEFTzhvwM/jZvGPuYEFTzhvwM/jZvGPuYEFTzhvwM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATHUtP8QRi7+L168+KbKDvRUiwz9nF9U/5WW5PlgZ2j/6dJ29JZumP2KoIb+7zaQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACNm8Y+5gQVPOG/Az8y4Tk8USzlu2LNuTyNm8Y+5gQVPOG/Az8y4Tk8USzlu2LNuTyNm8Y+5gQVPOG/Az8y4Tk8USzlu2LNuTyNm8Y+5gQVPOG/Az8y4Tk8USzlu2LNuTyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.3879055 0.00909541 0.5146466 ]\n [0.3879055 0.00909541 0.5146466 ]\n [0.3879055 0.00909541 0.5146466 ]\n [0.3879055 0.00909541 0.5146466 ]]",
60
+ "desired_goal": "[[ 0.67757106 -1.0864797 0.34344134]\n [-0.06430466 1.5244776 1.6647767 ]\n [ 0.36210552 1.7038984 -0.07688327]\n [ 1.3016096 -0.63147557 1.2875284 ]]",
61
+ "observation": "[[ 0.3879055 0.00909541 0.5146466 0.01134519 -0.00699381 0.02268094]\n [ 0.3879055 0.00909541 0.5146466 0.01134519 -0.00699381 0.02268094]\n [ 0.3879055 0.00909541 0.5146466 0.01134519 -0.00699381 0.02268094]\n [ 0.3879055 0.00909541 0.5146466 0.01134519 -0.00699381 0.02268094]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAis3Uvbn4GD5YQSs+3G0RviOy5T0Q3rs9UC0Kvar29T1g6oI+QC2pPeQ6hLx2XI49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.10390766 0.1493863 0.16724145]\n [-0.14202064 0.11215618 0.09173214]\n [-0.03373462 0.12009938 0.2556944 ]\n [ 0.08260584 -0.01614136 0.06951229]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6WSp9X6DCMCUhpRSlIwBbJRLMowBdJRHQKmX5DSgGr11fZQoaAZoCWgPQwiZDp2edyMPwJSGlFKUaBVLMmgWR0Cpl4akyk9EdX2UKGgGaAloD0MIq1lnfF/8E8CUhpRSlGgVSzJoFkdAqZcpRyfcvnV9lChoBmgJaA9DCOjdWFAY1BPAlIaUUpRoFUsyaBZHQKmW0UuctoV1fZQoaAZoCWgPQwhDVOHP8KYBwJSGlFKUaBVLMmgWR0CpmZ/c32mIdX2UKGgGaAloD0MIBW7dzVM9EMCUhpRSlGgVSzJoFkdAqZlDVhCtzXV9lChoBmgJaA9DCH2x9+KLphDAlIaUUpRoFUsyaBZHQKmY5vKlpGp1fZQoaAZoCWgPQwj5S4v6JPcUwJSGlFKUaBVLMmgWR0CpmI/dhy80dX2UKGgGaAloD0MIf73CgvsREMCUhpRSlGgVSzJoFkdAqZuM2itaIXV9lChoBmgJaA9DCN481SE3UxHAlIaUUpRoFUsyaBZHQKmbMFINEw51fZQoaAZoCWgPQwj/WfPjL+0ewJSGlFKUaBVLMmgWR0CpmtQLVnVYdX2UKGgGaAloD0MIbRyxFp8yFsCUhpRSlGgVSzJoFkdAqZp9EAo5P3V9lChoBmgJaA9DCHQn2H+d+wrAlIaUUpRoFUsyaBZHQKmdfQJokAx1fZQoaAZoCWgPQwhaZaa0/hYQwJSGlFKUaBVLMmgWR0CpnSAGjbi7dX2UKGgGaAloD0MIstR6v9HODcCUhpRSlGgVSzJoFkdAqZzD0WdmQXV9lChoBmgJaA9DCASQ2sTJvQ3AlIaUUpRoFUsyaBZHQKmcbQC0WuZ1fZQoaAZoCWgPQwgzGvm84lkRwJSGlFKUaBVLMmgWR0Cpn3kFnqVydX2UKGgGaAloD0MIYKsEi8O5BcCUhpRSlGgVSzJoFkdAqZ8coUi6hHV9lChoBmgJaA9DCAGKkSVzbA3AlIaUUpRoFUsyaBZHQKmewGO+7Dl1fZQoaAZoCWgPQwi1/pYA/DMLwJSGlFKUaBVLMmgWR0Cpnmliz9jxdX2UKGgGaAloD0MICFkWTPwhEsCUhpRSlGgVSzJoFkdAqaFyOLiuMnV9lChoBmgJaA9DCJ/L1CR44wXAlIaUUpRoFUsyaBZHQKmhFXOGCZp1fZQoaAZoCWgPQwjT3AphNVYGwJSGlFKUaBVLMmgWR0CpoLkmhM8HdX2UKGgGaAloD0MIwJMWLqtwCMCUhpRSlGgVSzJoFkdAqaBiSmqHXXV9lChoBmgJaA9DCHN/9bhvJRbAlIaUUpRoFUsyaBZHQKmjcNb1RLt1fZQoaAZoCWgPQwimgR/VsN8GwJSGlFKUaBVLMmgWR0CpoxW3Sa3JdX2UKGgGaAloD0MIdQZGXtYEBcCUhpRSlGgVSzJoFkdAqaK5s/IKdHV9lChoBmgJaA9DCLQB2IAI0QzAlIaUUpRoFUsyaBZHQKmiYwD/2kB1fZQoaAZoCWgPQwgvMgG/RhIDwJSGlFKUaBVLMmgWR0CppK5qubI+dX2UKGgGaAloD0MIMo6R7BHqDsCUhpRSlGgVSzJoFkdAqaRRBE8aGnV9lChoBmgJaA9DCEq05PG0HA7AlIaUUpRoFUsyaBZHQKmj861b7j11fZQoaAZoCWgPQwh0YaQXtfsOwJSGlFKUaBVLMmgWR0Cpo5uoHcDbdX2UKGgGaAloD0MI4QuTqYJRDMCUhpRSlGgVSzJoFkdAqaXL2JzkqHV9lChoBmgJaA9DCANAFTduARvAlIaUUpRoFUsyaBZHQKmlbjXFtKt1fZQoaAZoCWgPQwgy6ITQQXcRwJSGlFKUaBVLMmgWR0CppRDbi6xxdX2UKGgGaAloD0MI7Uj1nV90A8CUhpRSlGgVSzJoFkdAqaS4rJ8v3HV9lChoBmgJaA9DCLvSMlLvCQ/AlIaUUpRoFUsyaBZHQKmm7T8YQ8R1fZQoaAZoCWgPQwitaklHOQgSwJSGlFKUaBVLMmgWR0Cppo+X7cfvdX2UKGgGaAloD0MIHHqLh/c8GMCUhpRSlGgVSzJoFkdAqaYyP2f03HV9lChoBmgJaA9DCNzykZT0YBPAlIaUUpRoFUsyaBZHQKml2hSLqD91fZQoaAZoCWgPQwi/79+8OJEMwJSGlFKUaBVLMmgWR0CpqApazNUwdX2UKGgGaAloD0MIARO4dTePCcCUhpRSlGgVSzJoFkdAqaestRNypHV9lChoBmgJaA9DCHuCxHb3cBbAlIaUUpRoFUsyaBZHQKmnT7Kq4pd1fZQoaAZoCWgPQwjMJOoFnyYLwJSGlFKUaBVLMmgWR0CppvfICEHudX2UKGgGaAloD0MIVwkWhzM/CsCUhpRSlGgVSzJoFkdAqakyjQAuI3V9lChoBmgJaA9DCDV8C+vGOwnAlIaUUpRoFUsyaBZHQKmo1Ta0x/N1fZQoaAZoCWgPQwj4xhAAHFsJwJSGlFKUaBVLMmgWR0CpqHfzjFQ3dX2UKGgGaAloD0MI/plBfGBnDcCUhpRSlGgVSzJoFkdAqaggNXo1UHV9lChoBmgJaA9DCD6yuWqeUxPAlIaUUpRoFUsyaBZHQKmqX3pOerd1fZQoaAZoCWgPQwjUKY9uhAUPwJSGlFKUaBVLMmgWR0CpqgH/95yEdX2UKGgGaAloD0MIaEEo7+MoB8CUhpRSlGgVSzJoFkdAqamkhJRO13V9lChoBmgJaA9DCAVrnE1HIAnAlIaUUpRoFUsyaBZHQKmpTH3Dej51fZQoaAZoCWgPQwh3FOeoowMFwJSGlFKUaBVLMmgWR0Cpq4K3mV7hdX2UKGgGaAloD0MI8UbmkT+YAcCUhpRSlGgVSzJoFkdAqaslTDO1OXV9lChoBmgJaA9DCFDG+DB7SRbAlIaUUpRoFUsyaBZHQKmqx/OMVDd1fZQoaAZoCWgPQwj9hLNby+QQwJSGlFKUaBVLMmgWR0Cpqm/ub7TEdX2UKGgGaAloD0MIsFjDRe6pCsCUhpRSlGgVSzJoFkdAqaysLv1DjXV9lChoBmgJaA9DCELSp1X0xwPAlIaUUpRoFUsyaBZHQKmsToN/e+F1fZQoaAZoCWgPQwjRBmADIuQGwJSGlFKUaBVLMmgWR0Cpq/EdV/+bdX2UKGgGaAloD0MICMvY0M0eBsCUhpRSlGgVSzJoFkdAqauZCngpB3V9lChoBmgJaA9DCGLYYUz6KxfAlIaUUpRoFUsyaBZHQKmtygSOBDp1fZQoaAZoCWgPQwiEDrqEQ78WwJSGlFKUaBVLMmgWR0CprWx33YcvdX2UKGgGaAloD0MII4RHG0cMCsCUhpRSlGgVSzJoFkdAqa0PBvaURnV9lChoBmgJaA9DCN2adFsilwXAlIaUUpRoFUsyaBZHQKmstvP1L8J1fZQoaAZoCWgPQwjLETKQZ7cPwJSGlFKUaBVLMmgWR0Cprw+xGDtgdX2UKGgGaAloD0MI8djPYimS/7+UhpRSlGgVSzJoFkdAqa6yAz544nV9lChoBmgJaA9DCGFT51HxzxXAlIaUUpRoFUsyaBZHQKmuVM8ox591fZQoaAZoCWgPQwjIfhZLkVwGwJSGlFKUaBVLMmgWR0Cprf0MG5c1dX2UKGgGaAloD0MIkIe+u5VFAMCUhpRSlGgVSzJoFkdAqbA0wDeTFHV9lChoBmgJaA9DCG2MnfAS3ArAlIaUUpRoFUsyaBZHQKmv114gRsd1fZQoaAZoCWgPQwgXEcXkDXAGwJSGlFKUaBVLMmgWR0Cpr3oE0SAZdX2UKGgGaAloD0MI1CgkmdWrEsCUhpRSlGgVSzJoFkdAqa8iLIgeR3V9lChoBmgJaA9DCKWfcHZrWQPAlIaUUpRoFUsyaBZHQKmxVs9B8hN1fZQoaAZoCWgPQwg8okJ1c5EFwJSGlFKUaBVLMmgWR0CpsPkOAiFCdX2UKGgGaAloD0MI78ouGFzTDcCUhpRSlGgVSzJoFkdAqbCbxZuAJHV9lChoBmgJaA9DCOwYV1wctQvAlIaUUpRoFUsyaBZHQKmwQ8p1A7h1fZQoaAZoCWgPQwhzLVqAtvUCwJSGlFKUaBVLMmgWR0Cpsnpx3mmtdX2UKGgGaAloD0MINgUyO4vuGMCUhpRSlGgVSzJoFkdAqbIc7IT4+XV9lChoBmgJaA9DCIpXWdsUXxvAlIaUUpRoFUsyaBZHQKmxv71Iy0t1fZQoaAZoCWgPQwjv5T45ChAHwJSGlFKUaBVLMmgWR0CpsWfXGwRodX2UKGgGaAloD0MI8Pj2rkFfCcCUhpRSlGgVSzJoFkdAqbOclJHy3HV9lChoBmgJaA9DCF7yP/m7FwjAlIaUUpRoFUsyaBZHQKmzPvJiiIt1fZQoaAZoCWgPQwgKgVziyAMIwJSGlFKUaBVLMmgWR0CpsuG16Vt5dX2UKGgGaAloD0MIzcth9x3DEMCUhpRSlGgVSzJoFkdAqbKJ2MbWE3V9lChoBmgJaA9DCFgdOdIZ2APAlIaUUpRoFUsyaBZHQKm0xc7hegN1fZQoaAZoCWgPQwiLOJ1kq8sSwJSGlFKUaBVLMmgWR0CptGhPCVKPdX2UKGgGaAloD0MI5pDUQslECMCUhpRSlGgVSzJoFkdAqbQLdi2Dx3V9lChoBmgJaA9DCGEzwAXZkgbAlIaUUpRoFUsyaBZHQKmzs3GXHBF1fZQoaAZoCWgPQwjFc7aA0FoGwJSGlFKUaBVLMmgWR0CpteHEl3QldX2UKGgGaAloD0MIgSBAho79B8CUhpRSlGgVSzJoFkdAqbWEOLBKtnV9lChoBmgJaA9DCFcHQNzVCwLAlIaUUpRoFUsyaBZHQKm1Jvc8DCB1fZQoaAZoCWgPQwhRLSKKyfsMwJSGlFKUaBVLMmgWR0CptM8QAdXDdX2UKGgGaAloD0MIj/tW68SFCcCUhpRSlGgVSzJoFkdAqbcCUVzp5nV9lChoBmgJaA9DCJFDxM2p1BfAlIaUUpRoFUsyaBZHQKm2pLV4HHF1fZQoaAZoCWgPQwihndMs0M4SwJSGlFKUaBVLMmgWR0CptkeDnNgSdX2UKGgGaAloD0MImiUBamp5BMCUhpRSlGgVSzJoFkdAqbXvZM+NcXV9lChoBmgJaA9DCMhgxanWMhPAlIaUUpRoFUsyaBZHQKm4nllsguB1fZQoaAZoCWgPQwiu1onL8aoFwJSGlFKUaBVLMmgWR0CpuEGTTvy9dX2UKGgGaAloD0MIKsQj8fLUDcCUhpRSlGgVSzJoFkdAqbflWbPQfXV9lChoBmgJaA9DCF6ezhWlBAPAlIaUUpRoFUsyaBZHQKm3jg/keZJ1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f32777323277084d6bf5eb6d3ed5a8d0a74c4ecff078f8a37c0e9b206fca8fea
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:466a06aa84cc266752bb017d9024b77e30a0b8adde96099ded8f087c758cd667
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f095c1f0af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f095c1ec8d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677744324805659652, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjZvGPuYEFTzhvwM/jZvGPuYEFTzhvwM/jZvGPuYEFTzhvwM/jZvGPuYEFTzhvwM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATHUtP8QRi7+L168+KbKDvRUiwz9nF9U/5WW5PlgZ2j/6dJ29JZumP2KoIb+7zaQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACNm8Y+5gQVPOG/Az8y4Tk8USzlu2LNuTyNm8Y+5gQVPOG/Az8y4Tk8USzlu2LNuTyNm8Y+5gQVPOG/Az8y4Tk8USzlu2LNuTyNm8Y+5gQVPOG/Az8y4Tk8USzlu2LNuTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3879055 0.00909541 0.5146466 ]\n [0.3879055 0.00909541 0.5146466 ]\n [0.3879055 0.00909541 0.5146466 ]\n [0.3879055 0.00909541 0.5146466 ]]", "desired_goal": "[[ 0.67757106 -1.0864797 0.34344134]\n [-0.06430466 1.5244776 1.6647767 ]\n [ 0.36210552 1.7038984 -0.07688327]\n [ 1.3016096 -0.63147557 1.2875284 ]]", "observation": "[[ 0.3879055 0.00909541 0.5146466 0.01134519 -0.00699381 0.02268094]\n [ 0.3879055 0.00909541 0.5146466 0.01134519 -0.00699381 0.02268094]\n [ 0.3879055 0.00909541 0.5146466 0.01134519 -0.00699381 0.02268094]\n [ 0.3879055 0.00909541 0.5146466 0.01134519 -0.00699381 0.02268094]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAis3Uvbn4GD5YQSs+3G0RviOy5T0Q3rs9UC0Kvar29T1g6oI+QC2pPeQ6hLx2XI49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10390766 0.1493863 0.16724145]\n [-0.14202064 0.11215618 0.09173214]\n [-0.03373462 0.12009938 0.2556944 ]\n [ 0.08260584 -0.01614136 0.06951229]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6WSp9X6DCMCUhpRSlIwBbJRLMowBdJRHQKmX5DSgGr11fZQoaAZoCWgPQwiZDp2edyMPwJSGlFKUaBVLMmgWR0Cpl4akyk9EdX2UKGgGaAloD0MIq1lnfF/8E8CUhpRSlGgVSzJoFkdAqZcpRyfcvnV9lChoBmgJaA9DCOjdWFAY1BPAlIaUUpRoFUsyaBZHQKmW0UuctoV1fZQoaAZoCWgPQwhDVOHP8KYBwJSGlFKUaBVLMmgWR0CpmZ/c32mIdX2UKGgGaAloD0MIBW7dzVM9EMCUhpRSlGgVSzJoFkdAqZlDVhCtzXV9lChoBmgJaA9DCH2x9+KLphDAlIaUUpRoFUsyaBZHQKmY5vKlpGp1fZQoaAZoCWgPQwj5S4v6JPcUwJSGlFKUaBVLMmgWR0CpmI/dhy80dX2UKGgGaAloD0MIf73CgvsREMCUhpRSlGgVSzJoFkdAqZuM2itaIXV9lChoBmgJaA9DCN481SE3UxHAlIaUUpRoFUsyaBZHQKmbMFINEw51fZQoaAZoCWgPQwj/WfPjL+0ewJSGlFKUaBVLMmgWR0CpmtQLVnVYdX2UKGgGaAloD0MIbRyxFp8yFsCUhpRSlGgVSzJoFkdAqZp9EAo5P3V9lChoBmgJaA9DCHQn2H+d+wrAlIaUUpRoFUsyaBZHQKmdfQJokAx1fZQoaAZoCWgPQwhaZaa0/hYQwJSGlFKUaBVLMmgWR0CpnSAGjbi7dX2UKGgGaAloD0MIstR6v9HODcCUhpRSlGgVSzJoFkdAqZzD0WdmQXV9lChoBmgJaA9DCASQ2sTJvQ3AlIaUUpRoFUsyaBZHQKmcbQC0WuZ1fZQoaAZoCWgPQwgzGvm84lkRwJSGlFKUaBVLMmgWR0Cpn3kFnqVydX2UKGgGaAloD0MIYKsEi8O5BcCUhpRSlGgVSzJoFkdAqZ8coUi6hHV9lChoBmgJaA9DCAGKkSVzbA3AlIaUUpRoFUsyaBZHQKmewGO+7Dl1fZQoaAZoCWgPQwi1/pYA/DMLwJSGlFKUaBVLMmgWR0Cpnmliz9jxdX2UKGgGaAloD0MICFkWTPwhEsCUhpRSlGgVSzJoFkdAqaFyOLiuMnV9lChoBmgJaA9DCJ/L1CR44wXAlIaUUpRoFUsyaBZHQKmhFXOGCZp1fZQoaAZoCWgPQwjT3AphNVYGwJSGlFKUaBVLMmgWR0CpoLkmhM8HdX2UKGgGaAloD0MIwJMWLqtwCMCUhpRSlGgVSzJoFkdAqaBiSmqHXXV9lChoBmgJaA9DCHN/9bhvJRbAlIaUUpRoFUsyaBZHQKmjcNb1RLt1fZQoaAZoCWgPQwimgR/VsN8GwJSGlFKUaBVLMmgWR0CpoxW3Sa3JdX2UKGgGaAloD0MIdQZGXtYEBcCUhpRSlGgVSzJoFkdAqaK5s/IKdHV9lChoBmgJaA9DCLQB2IAI0QzAlIaUUpRoFUsyaBZHQKmiYwD/2kB1fZQoaAZoCWgPQwgvMgG/RhIDwJSGlFKUaBVLMmgWR0CppK5qubI+dX2UKGgGaAloD0MIMo6R7BHqDsCUhpRSlGgVSzJoFkdAqaRRBE8aGnV9lChoBmgJaA9DCEq05PG0HA7AlIaUUpRoFUsyaBZHQKmj861b7j11fZQoaAZoCWgPQwh0YaQXtfsOwJSGlFKUaBVLMmgWR0Cpo5uoHcDbdX2UKGgGaAloD0MI4QuTqYJRDMCUhpRSlGgVSzJoFkdAqaXL2JzkqHV9lChoBmgJaA9DCANAFTduARvAlIaUUpRoFUsyaBZHQKmlbjXFtKt1fZQoaAZoCWgPQwgy6ITQQXcRwJSGlFKUaBVLMmgWR0CppRDbi6xxdX2UKGgGaAloD0MI7Uj1nV90A8CUhpRSlGgVSzJoFkdAqaS4rJ8v3HV9lChoBmgJaA9DCLvSMlLvCQ/AlIaUUpRoFUsyaBZHQKmm7T8YQ8R1fZQoaAZoCWgPQwitaklHOQgSwJSGlFKUaBVLMmgWR0Cppo+X7cfvdX2UKGgGaAloD0MIHHqLh/c8GMCUhpRSlGgVSzJoFkdAqaYyP2f03HV9lChoBmgJaA9DCNzykZT0YBPAlIaUUpRoFUsyaBZHQKml2hSLqD91fZQoaAZoCWgPQwi/79+8OJEMwJSGlFKUaBVLMmgWR0CpqApazNUwdX2UKGgGaAloD0MIARO4dTePCcCUhpRSlGgVSzJoFkdAqaestRNypHV9lChoBmgJaA9DCHuCxHb3cBbAlIaUUpRoFUsyaBZHQKmnT7Kq4pd1fZQoaAZoCWgPQwjMJOoFnyYLwJSGlFKUaBVLMmgWR0CppvfICEHudX2UKGgGaAloD0MIVwkWhzM/CsCUhpRSlGgVSzJoFkdAqakyjQAuI3V9lChoBmgJaA9DCDV8C+vGOwnAlIaUUpRoFUsyaBZHQKmo1Ta0x/N1fZQoaAZoCWgPQwj4xhAAHFsJwJSGlFKUaBVLMmgWR0CpqHfzjFQ3dX2UKGgGaAloD0MI/plBfGBnDcCUhpRSlGgVSzJoFkdAqaggNXo1UHV9lChoBmgJaA9DCD6yuWqeUxPAlIaUUpRoFUsyaBZHQKmqX3pOerd1fZQoaAZoCWgPQwjUKY9uhAUPwJSGlFKUaBVLMmgWR0CpqgH/95yEdX2UKGgGaAloD0MIaEEo7+MoB8CUhpRSlGgVSzJoFkdAqamkhJRO13V9lChoBmgJaA9DCAVrnE1HIAnAlIaUUpRoFUsyaBZHQKmpTH3Dej51fZQoaAZoCWgPQwh3FOeoowMFwJSGlFKUaBVLMmgWR0Cpq4K3mV7hdX2UKGgGaAloD0MI8UbmkT+YAcCUhpRSlGgVSzJoFkdAqaslTDO1OXV9lChoBmgJaA9DCFDG+DB7SRbAlIaUUpRoFUsyaBZHQKmqx/OMVDd1fZQoaAZoCWgPQwj9hLNby+QQwJSGlFKUaBVLMmgWR0Cpqm/ub7TEdX2UKGgGaAloD0MIsFjDRe6pCsCUhpRSlGgVSzJoFkdAqaysLv1DjXV9lChoBmgJaA9DCELSp1X0xwPAlIaUUpRoFUsyaBZHQKmsToN/e+F1fZQoaAZoCWgPQwjRBmADIuQGwJSGlFKUaBVLMmgWR0Cpq/EdV/+bdX2UKGgGaAloD0MICMvY0M0eBsCUhpRSlGgVSzJoFkdAqauZCngpB3V9lChoBmgJaA9DCGLYYUz6KxfAlIaUUpRoFUsyaBZHQKmtygSOBDp1fZQoaAZoCWgPQwiEDrqEQ78WwJSGlFKUaBVLMmgWR0CprWx33YcvdX2UKGgGaAloD0MII4RHG0cMCsCUhpRSlGgVSzJoFkdAqa0PBvaURnV9lChoBmgJaA9DCN2adFsilwXAlIaUUpRoFUsyaBZHQKmstvP1L8J1fZQoaAZoCWgPQwjLETKQZ7cPwJSGlFKUaBVLMmgWR0Cprw+xGDtgdX2UKGgGaAloD0MI8djPYimS/7+UhpRSlGgVSzJoFkdAqa6yAz544nV9lChoBmgJaA9DCGFT51HxzxXAlIaUUpRoFUsyaBZHQKmuVM8ox591fZQoaAZoCWgPQwjIfhZLkVwGwJSGlFKUaBVLMmgWR0Cprf0MG5c1dX2UKGgGaAloD0MIkIe+u5VFAMCUhpRSlGgVSzJoFkdAqbA0wDeTFHV9lChoBmgJaA9DCG2MnfAS3ArAlIaUUpRoFUsyaBZHQKmv114gRsd1fZQoaAZoCWgPQwgXEcXkDXAGwJSGlFKUaBVLMmgWR0Cpr3oE0SAZdX2UKGgGaAloD0MI1CgkmdWrEsCUhpRSlGgVSzJoFkdAqa8iLIgeR3V9lChoBmgJaA9DCKWfcHZrWQPAlIaUUpRoFUsyaBZHQKmxVs9B8hN1fZQoaAZoCWgPQwg8okJ1c5EFwJSGlFKUaBVLMmgWR0CpsPkOAiFCdX2UKGgGaAloD0MI78ouGFzTDcCUhpRSlGgVSzJoFkdAqbCbxZuAJHV9lChoBmgJaA9DCOwYV1wctQvAlIaUUpRoFUsyaBZHQKmwQ8p1A7h1fZQoaAZoCWgPQwhzLVqAtvUCwJSGlFKUaBVLMmgWR0Cpsnpx3mmtdX2UKGgGaAloD0MINgUyO4vuGMCUhpRSlGgVSzJoFkdAqbIc7IT4+XV9lChoBmgJaA9DCIpXWdsUXxvAlIaUUpRoFUsyaBZHQKmxv71Iy0t1fZQoaAZoCWgPQwjv5T45ChAHwJSGlFKUaBVLMmgWR0CpsWfXGwRodX2UKGgGaAloD0MI8Pj2rkFfCcCUhpRSlGgVSzJoFkdAqbOclJHy3HV9lChoBmgJaA9DCF7yP/m7FwjAlIaUUpRoFUsyaBZHQKmzPvJiiIt1fZQoaAZoCWgPQwgKgVziyAMIwJSGlFKUaBVLMmgWR0CpsuG16Vt5dX2UKGgGaAloD0MIzcth9x3DEMCUhpRSlGgVSzJoFkdAqbKJ2MbWE3V9lChoBmgJaA9DCFgdOdIZ2APAlIaUUpRoFUsyaBZHQKm0xc7hegN1fZQoaAZoCWgPQwiLOJ1kq8sSwJSGlFKUaBVLMmgWR0CptGhPCVKPdX2UKGgGaAloD0MI5pDUQslECMCUhpRSlGgVSzJoFkdAqbQLdi2Dx3V9lChoBmgJaA9DCGEzwAXZkgbAlIaUUpRoFUsyaBZHQKmzs3GXHBF1fZQoaAZoCWgPQwjFc7aA0FoGwJSGlFKUaBVLMmgWR0CpteHEl3QldX2UKGgGaAloD0MIgSBAho79B8CUhpRSlGgVSzJoFkdAqbWEOLBKtnV9lChoBmgJaA9DCFcHQNzVCwLAlIaUUpRoFUsyaBZHQKm1Jvc8DCB1fZQoaAZoCWgPQwhRLSKKyfsMwJSGlFKUaBVLMmgWR0CptM8QAdXDdX2UKGgGaAloD0MIj/tW68SFCcCUhpRSlGgVSzJoFkdAqbcCUVzp5nV9lChoBmgJaA9DCJFDxM2p1BfAlIaUUpRoFUsyaBZHQKm2pLV4HHF1fZQoaAZoCWgPQwihndMs0M4SwJSGlFKUaBVLMmgWR0CptkeDnNgSdX2UKGgGaAloD0MImiUBamp5BMCUhpRSlGgVSzJoFkdAqbXvZM+NcXV9lChoBmgJaA9DCMhgxanWMhPAlIaUUpRoFUsyaBZHQKm4nllsguB1fZQoaAZoCWgPQwiu1onL8aoFwJSGlFKUaBVLMmgWR0CpuEGTTvy9dX2UKGgGaAloD0MIKsQj8fLUDcCUhpRSlGgVSzJoFkdAqbflWbPQfXV9lChoBmgJaA9DCF6ezhWlBAPAlIaUUpRoFUsyaBZHQKm3jg/keZJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (814 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.9785510344430803, "std_reward": 0.5336159072438857, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-02T09:00:17.215571"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5c815fa4b6966448b5f1efe11616cc40ec8ceafa8e66a3cf3ca3c45b7978133
3
+ size 3056