File size: 1,943 Bytes
1b641a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e030ed
1b641a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
base_model: VietAI/vit5-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: sentiment_oversampling_25_12
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sentiment_oversampling_25_12

This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1955
- F1: 0.6240
- Accuracy: 0.7911

## Model description

Sentiment analysis for user's review on Meta application

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 80
- eval_batch_size: 80
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
| 1.2607        | 0.37  | 200  | 0.2220          | 0.5931 | 0.7885   |
| 0.2748        | 0.75  | 400  | 0.2099          | 0.6012 | 0.7954   |
| 0.2591        | 1.12  | 600  | 0.1922          | 0.6114 | 0.8117   |
| 0.2519        | 1.5   | 800  | 0.1993          | 0.6203 | 0.7975   |
| 0.2442        | 1.87  | 1000 | 0.2153          | 0.6092 | 0.7555   |
| 0.2408        | 2.24  | 1200 | 0.1915          | 0.6182 | 0.7992   |
| 0.2309        | 2.62  | 1400 | 0.2064          | 0.6109 | 0.7703   |
| 0.2322        | 2.99  | 1600 | 0.1972          | 0.6169 | 0.7881   |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0