--- language: - vi base_model: openai/whisper-largev2-ja-v2 tags: - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Large V2 Ja - Anh Phuong results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Google fleurs type: google/fleurs config: ja_jp split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 58.247168882323976 --- # Whisper Large V2 Ja - Anh Phuong This model is a fine-tuned version of [openai/whisper-largev2-ja-v2](https://huggingface.co/openai/whisper-largev2-ja-v2) on the Google fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.2626 - Wer: 58.2472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.004 | 6.25 | 1000 | 0.2030 | 61.0044 | | 0.0022 | 12.5 | 2000 | 0.2081 | 60.6105 | | 0.0002 | 18.75 | 3000 | 0.2401 | 58.7888 | | 0.0001 | 25.0 | 4000 | 0.2531 | 58.6411 | | 0.0001 | 31.25 | 5000 | 0.2598 | 58.2472 | | 0.0001 | 37.5 | 6000 | 0.2626 | 58.2472 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1