File size: 5,288 Bytes
47625be 39e3a80 47625be 39e3a80 47625be 39e3a80 f260c50 39e3a80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
---
tags:
- pyannote
- pyannote-audio
- pyannote-audio-model
- audio
- voice
- speech
- speaker
- speaker-segmentation
- voice-activity-detection
- overlapped-speech-detection
- resegmentation
datasets:
- ami
- dihard
- voxconverse
license: mit
inference: false
---
# 🎹 Speaker segmentation
![Example](example.png)
Model from *[End-to-end speaker segmentation for overlap-aware resegmentation](http://arxiv.org/abs/2104.04045)*,
by Hervé Bredin and Antoine Laurent.
[Online demo](https://huggingface.co/spaces/pyannote/pretrained-pipelines) is available as a Hugging Face Space.
## Support
For commercial enquiries and scientific consulting, please contact [me](mailto:herve@niderb.fr).
For [technical questions](https://github.com/pyannote/pyannote-audio/discussions) and [bug reports](https://github.com/pyannote/pyannote-audio/issues), please check [pyannote.audio](https://github.com/pyannote/pyannote-audio) Github repository.
## Usage
Relies on pyannote.audio 2.0 currently in development: see [installation instructions](https://github.com/pyannote/pyannote-audio/tree/develop#installation).
### Voice activity detection
```python
from pyannote.audio.pipelines import VoiceActivityDetection
pipeline = VoiceActivityDetection(segmentation="anilbs/segmentation")
HYPER_PARAMETERS = {
# onset/offset activation thresholds
"onset": 0.5, "offset": 0.5,
# remove speech regions shorter than that many seconds.
"min_duration_on": 0.0,
# fill non-speech regions shorter than that many seconds.
"min_duration_off": 0.0
}
pipeline.instantiate(HYPER_PARAMETERS)
vad = pipeline("audio.wav")
# `vad` is a pyannote.core.Annotation instance containing speech regions
```
### Overlapped speech detection
```python
from pyannote.audio.pipelines import OverlappedSpeechDetection
pipeline = OverlappedSpeechDetection(segmentation="pyannote/segmentation")
pipeline.instantiate(HYPER_PARAMETERS)
osd = pipeline("audio.wav")
# `osd` is a pyannote.core.Annotation instance containing overlapped speech regions
```
### Resegmentation
```python
from pyannote.audio.pipelines import Resegmentation
pipeline = Resegmentation(segmentation="pyannote/segmentation",
diarization="baseline")
pipeline.instantiate(HYPER_PARAMETERS)
resegmented_baseline = pipeline({"audio": "audio.wav", "baseline": baseline})
# where `baseline` should be provided as a pyannote.core.Annotation instance
```
### Raw scores
```python
from pyannote.audio import Inference
inference = Inference("pyannote/segmentation")
segmentation = inference("audio.wav")
# `segmentation` is a pyannote.core.SlidingWindowFeature
# instance containing raw segmentation scores like the
# one pictured above (output)
```
## Reproducible research
In order to reproduce the results of the paper ["End-to-end speaker segmentation for overlap-aware resegmentation
"](https://arxiv.org/abs/2104.04045), use `pyannote/segmentation@Interspeech2021` with the following hyper-parameters:
| Voice activity detection | `onset` | `offset` | `min_duration_on` | `min_duration_off` |
| ------------------------ | ------- | -------- | ----------------- | ------------------ |
| AMI Mix-Headset | 0.684 | 0.577 | 0.181 | 0.037 |
| DIHARD3 | 0.767 | 0.377 | 0.136 | 0.067 |
| VoxConverse | 0.767 | 0.713 | 0.182 | 0.501 |
| Overlapped speech detection | `onset` | `offset` | `min_duration_on` | `min_duration_off` |
| --------------------------- | ------- | -------- | ----------------- | ------------------ |
| AMI Mix-Headset | 0.448 | 0.362 | 0.116 | 0.187 |
| DIHARD3 | 0.430 | 0.320 | 0.091 | 0.144 |
| VoxConverse | 0.587 | 0.426 | 0.337 | 0.112 |
| Resegmentation of VBx | `onset` | `offset` | `min_duration_on` | `min_duration_off` |
| --------------------- | ------- | -------- | ----------------- | ------------------ |
| AMI Mix-Headset | 0.542 | 0.527 | 0.044 | 0.705 |
| DIHARD3 | 0.592 | 0.489 | 0.163 | 0.182 |
| VoxConverse | 0.537 | 0.724 | 0.410 | 0.563 |
Expected outputs (and VBx baseline) are also provided in the `/reproducible_research` sub-directories.
## Citation
```bibtex
@inproceedings{Bredin2021,
Title = {{End-to-end speaker segmentation for overlap-aware resegmentation}},
Author = {{Bredin}, Herv{\'e} and {Laurent}, Antoine},
Booktitle = {Proc. Interspeech 2021},
Address = {Brno, Czech Republic},
Month = {August},
Year = {2021},
```
```bibtex
@inproceedings{Bredin2020,
Title = {{pyannote.audio: neural building blocks for speaker diarization}},
Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe},
Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing},
Address = {Barcelona, Spain},
Month = {May},
Year = {2020},
}
```
|