--- tags: - automatic-speech-recognition - english_asr - generated_from_trainer model-index: - name: wavlm-base-english results: [] --- # wavlm-base-english This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on the english_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0955 - Wer: 0.0773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.8664 | 0.17 | 300 | 2.8439 | 1.0 | | 0.5009 | 0.34 | 600 | 0.2709 | 0.2162 | | 0.2056 | 0.5 | 900 | 0.1934 | 0.1602 | | 0.1648 | 0.67 | 1200 | 0.1576 | 0.1306 | | 0.1922 | 0.84 | 1500 | 0.1358 | 0.1114 | | 0.093 | 1.01 | 1800 | 0.1277 | 0.1035 | | 0.0652 | 1.18 | 2100 | 0.1251 | 0.1005 | | 0.0848 | 1.35 | 2400 | 0.1188 | 0.0964 | | 0.0706 | 1.51 | 2700 | 0.1091 | 0.0905 | | 0.0846 | 1.68 | 3000 | 0.1018 | 0.0840 | | 0.0684 | 1.85 | 3300 | 0.0978 | 0.0809 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.0 - Tokenizers 0.10.3