Upload test 2 of PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 267.76 +/- 16.85
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faa28694c20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faa28694cb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faa28694d40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faa28694dd0>", "_build": "<function ActorCriticPolicy._build at 0x7faa28694e60>", "forward": "<function ActorCriticPolicy.forward at 0x7faa28694ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faa28694f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7faa2869c050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faa2869c0e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faa2869c170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faa2869c200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7faa286d6e70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652109998.0180988, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBbsj32RGG641ZjOr4Xd7WYWsS6ChCBuQAAgD8AAAAA2smGvZ+H1Lv2oKG7rdpUPC14Ir1Q8TY9AACAPwAAgD8a9W69Qf4NPhCgrTzdC4a+ImpZPfJtmTsAAAAAAAAAAOaYgr02vz89XrquPUO6QL7Otg8972A+vQAAAAAAAAAATTt+PUifkLpYMVa3AEBaMGb2ubq93HQ2AACAPwAAgD+aWYO9w8VOuoYPrjpN4kM1Sjk1uyV1yrkAAIA/AACAP83n2j3bdq68Bs24voGuo73T0yU+tPQMvgAAgD8AAIA/uhE9PmlZL7zKiWo6r79BuBNblr0L5Y65AACAPwAAgD+goWo+WXcNP0L2p7185sG+ROI6PoIdtr0AAAAAAAAAAJq8Bz4IUVk/2gGFPurkFL+AOC0+dSrMPQAAAAAAAAAAU/4xvqeBPj/lPnM965HhvnMOGL72Ng0+AAAAAAAAAACaa4S9qTmsP+7Mgr5NN9u+6gDqvU0zBr4AAAAAAAAAADN7zbtdnqc/HnNAvVzF/b4aA/K75Q/VOQAAAAAAAAAAQO2Vva7Rn7oYLay4hrK7s6daNrk4vsQ3AACAPwAAgD9mtXM9j3INuvZT2zZEdB6xTi8luwUJALYAAIA/AACAP2ZlJz2kIR278koiPNBtxTy3hwO81w6oPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsMvwn64PcECUhpRSlIwBbJRNXwGMAXSUR0CN4ciQDFIedX2UKGgGaAloD0MIdeRIZ2DAbkCUhpRSlGgVTcYBaBZHQI3iAw22oeh1fZQoaAZoCWgPQwiiYMYULLxuQJSGlFKUaBVNEgFoFkdAjeR2H1vl2nV9lChoBmgJaA9DCMKKU62FSXJAlIaUUpRoFU0tAmgWR0CN5beVs1sMdX2UKGgGaAloD0MIECTvHApycUCUhpRSlGgVTd0CaBZHQI3mGd3B55Z1fZQoaAZoCWgPQwi2n4zxYYZxQJSGlFKUaBVNdQJoFkdAjenAxrSE13V9lChoBmgJaA9DCFa2D3nL629AlIaUUpRoFUvmaBZHQI3rRJ2+wkh1fZQoaAZoCWgPQwhS7dPxGNhiQJSGlFKUaBVN6ANoFkdAjexBHLA573V9lChoBmgJaA9DCLUzTG2pBHBAlIaUUpRoFU2fA2gWR0COOTobn5i3dX2UKGgGaAloD0MI71NVaCDebkCUhpRSlGgVTTEBaBZHQI46ZUkv9Lp1fZQoaAZoCWgPQwhIF5tWCk1SQJSGlFKUaBVLm2gWR0COPK1PWQOndX2UKGgGaAloD0MIMnVXdgFBcECUhpRSlGgVTScCaBZHQI5AbZxrBTJ1fZQoaAZoCWgPQwgVqTC2UBh0QJSGlFKUaBVNHAFoFkdAjkFDa4+bE3V9lChoBmgJaA9DCMnH7gLl1nFAlIaUUpRoFU0RAWgWR0COQVho/RmcdX2UKGgGaAloD0MID+85sBwJcUCUhpRSlGgVTWIBaBZHQI5HAouwost1fZQoaAZoCWgPQwiz7bQ14hNwQJSGlFKUaBVNNwFoFkdAjkfC3gDRt3V9lChoBmgJaA9DCME5I0r7NG5AlIaUUpRoFU1fAmgWR0COSN+bVjI8dX2UKGgGaAloD0MIZJKRs7AfcUCUhpRSlGgVTQcBaBZHQI5Ja/47A+J1fZQoaAZoCWgPQwhwJNBgUyVxQJSGlFKUaBVNZAFoFkdAjkmtD2Jzk3V9lChoBmgJaA9DCMdLN4lBU3JAlIaUUpRoFU0xAWgWR0COTRlCCz1LdX2UKGgGaAloD0MIbATidf1DckCUhpRSlGgVTR4BaBZHQI5NbSLIgeR1fZQoaAZoCWgPQwjumLoru9tuQJSGlFKUaBVL+WgWR0COUtm8M/hVdX2UKGgGaAloD0MIejnsvqPxcECUhpRSlGgVTacBaBZHQI5TEka/ATJ1fZQoaAZoCWgPQwiRDDm2XrZyQJSGlFKUaBVNXwFoFkdAjlNG4RVZLnV9lChoBmgJaA9DCBwIyQLmCHJAlIaUUpRoFU0QAWgWR0COU5Nfw7T2dX2UKGgGaAloD0MI6+V3mgyacUCUhpRSlGgVTUADaBZHQI5UPXNC7bt1fZQoaAZoCWgPQwjImSZsv9JxQJSGlFKUaBVNIANoFkdAjlSmwJPZZnV9lChoBmgJaA9DCP0xrU2jMnFAlIaUUpRoFU1xAWgWR0COVhAX2ugZdX2UKGgGaAloD0MIptWQuIdDcUCUhpRSlGgVS+9oFkdAjlaf8uSOinV9lChoBmgJaA9DCPcBSG2iY3FAlIaUUpRoFU0zA2gWR0COWBxx1gYxdX2UKGgGaAloD0MI4h+29CikckCUhpRSlGgVTVgBaBZHQI5dorz5GjN1fZQoaAZoCWgPQwiUMqmhTcNwQJSGlFKUaBVNWwFoFkdAjl/sqz7di3V9lChoBmgJaA9DCM1aCki70nBAlIaUUpRoFU1MAWgWR0COYoLAHmihdX2UKGgGaAloD0MIKNGSx5PUckCUhpRSlGgVTQYBaBZHQI5jsT6BRQ91fZQoaAZoCWgPQwjqknGM5EFvQJSGlFKUaBVNnQFoFkdAjmOuhK15SnV9lChoBmgJaA9DCIlFDDsMjnNAlIaUUpRoFU0nAWgWR0COZXFuNxVAdX2UKGgGaAloD0MI8DSZ8famcUCUhpRSlGgVTXQBaBZHQI5lhSeiBXl1fZQoaAZoCWgPQwjjjGFOkN1wQJSGlFKUaBVNHQFoFkdAjma0fgaWHHV9lChoBmgJaA9DCHhjQWFQEnJAlIaUUpRoFU0+AWgWR0COZ4iwjdHldX2UKGgGaAloD0MIaLPqc7UHcUCUhpRSlGgVTeQBaBZHQI5ooIyCWeJ1fZQoaAZoCWgPQwiun/6z5p5wQJSGlFKUaBVNhAFoFkdAjmyi83++/XV9lChoBmgJaA9DCFjlQuXfbHBAlIaUUpRoFU1yAWgWR0CObm1a4c3mdX2UKGgGaAloD0MIU67wLpfzbkCUhpRSlGgVTRYBaBZHQI5v39kz41x1fZQoaAZoCWgPQwjTZwdcl+VyQJSGlFKUaBVNcgFoFkdAjnAxCY1HfHV9lChoBmgJaA9DCNvf2R49JW9AlIaUUpRoFU2cAWgWR0COcF0Fr2xqdX2UKGgGaAloD0MIh4cwfhq7OECUhpRSlGgVS5hoFkdAjnENCiRGMHV9lChoBmgJaA9DCDV9dsD1ZnNAlIaUUpRoFUv6aBZHQI5yIKhL5AR1fZQoaAZoCWgPQwhJu9HHvAtyQJSGlFKUaBVNAAFoFkdAjnNw176YV3V9lChoBmgJaA9DCLL1DOGYO3BAlIaUUpRoFU1IAWgWR0COdIRxLkCFdX2UKGgGaAloD0MIAad38X6hbUCUhpRSlGgVS/ZoFkdAjnW55qubJHV9lChoBmgJaA9DCN5Wem32dHFAlIaUUpRoFU1bAWgWR0COeUB2fTTfdX2UKGgGaAloD0MIlBRYAFMEckCUhpRSlGgVTVIBaBZHQI56cJ8fFJh1fZQoaAZoCWgPQwji5H6HYt9wQJSGlFKUaBVL6mgWR0COfQwhW5pbdX2UKGgGaAloD0MIXoB9dGrKbUCUhpRSlGgVTX0BaBZHQI59Xq5byH51fZQoaAZoCWgPQwhsX0Av3FpwQJSGlFKUaBVNQQFoFkdAjoEVGkN4JXV9lChoBmgJaA9DCCRiSiRR32ZAlIaUUpRoFU3oA2gWR0COgmpEQXhwdX2UKGgGaAloD0MIN8KiIg4eckCUhpRSlGgVTQUBaBZHQI6DMfcN6Pd1fZQoaAZoCWgPQwi0lCwnoWhsQJSGlFKUaBVNLQFoFkdAjoODjR2KVXV9lChoBmgJaA9DCN/CuvFuenFAlIaUUpRoFUvbaBZHQI6ESC8OCoV1fZQoaAZoCWgPQwhjm1Q01rhGQJSGlFKUaBVLrGgWR0COhLAP/aQFdX2UKGgGaAloD0MIuMzpslgHcECUhpRSlGgVTVIBaBZHQI6Fcajvd/J1fZQoaAZoCWgPQwi/LO3U3FByQJSGlFKUaBVNHwNoFkdAjoWdVea8YnV9lChoBmgJaA9DCBRa1v2jGXFAlIaUUpRoFU3cAWgWR0COhr6GgzxgdX2UKGgGaAloD0MIFt16TU8NcUCUhpRSlGgVTSUBaBZHQI6HWEVWS2Z1fZQoaAZoCWgPQwjylxb1SR5NQJSGlFKUaBVLrWgWR0COiBQwblzVdX2UKGgGaAloD0MInUoGgOrVcECUhpRSlGgVTZcBaBZHQI6KLdgv1151fZQoaAZoCWgPQwgNjpJXZxFxQJSGlFKUaBVNFAFoFkdAjotAWSEDhnV9lChoBmgJaA9DCLzrbMh/BXJAlIaUUpRoFU2lAWgWR0COjXYHxBmgdX2UKGgGaAloD0MIeqnYmNdVcUCUhpRSlGgVTQABaBZHQI6RJL5AQg91fZQoaAZoCWgPQwi4eHjPgWNvQJSGlFKUaBVNHAJoFkdAjpFVhb4agnV9lChoBmgJaA9DCHHoLR6ebnJAlIaUUpRoFUvbaBZHQI6SF18stkF1fZQoaAZoCWgPQwjOiqiJvqhvQJSGlFKUaBVNDwFoFkdAjpLUihWYGHV9lChoBmgJaA9DCBjt8UK68nBAlIaUUpRoFU0NAWgWR0COk8g5imVJdX2UKGgGaAloD0MI2ERmLrBncECUhpRSlGgVTREBaBZHQI6UdpItlI51fZQoaAZoCWgPQwju6eqORT9xQJSGlFKUaBVNhQFoFkdAjpSMV+I/JXV9lChoBmgJaA9DCELPZtUndHBAlIaUUpRoFU0VAWgWR0COlXAzHjp+dX2UKGgGaAloD0MIFAfQ73tdckCUhpRSlGgVTV0BaBZHQI6XugezUqh1fZQoaAZoCWgPQwizJ4HNeU5xQJSGlFKUaBVNBgFoFkdAjptuPV/c33V9lChoBmgJaA9DCKBuoMA7gnJAlIaUUpRoFU28AWgWR0COm77KJVKgdX2UKGgGaAloD0MIsTBETp9ccECUhpRSlGgVTXQBaBZHQI6d4pKBd2R1fZQoaAZoCWgPQwgZHCWvztpyQJSGlFKUaBVNjAFoFkdAjp6jjrAxjHV9lChoBmgJaA9DCKadmssN6W5AlIaUUpRoFU0VAWgWR0COns9SMtK7dX2UKGgGaAloD0MISvHxCRn+ckCUhpRSlGgVTTEBaBZHQI6k4+r2g391fZQoaAZoCWgPQwiyRj1Eo29uQJSGlFKUaBVNPgFoFkdAjqkZBTn7pHV9lChoBmgJaA9DCKJCdXOxcnFAlIaUUpRoFU1sAWgWR0COqVWlMyrQdX2UKGgGaAloD0MIyeTUzjCVcECUhpRSlGgVTSoBaBZHQI6pm8CgbqB1fZQoaAZoCWgPQwiR8pNqH7xwQJSGlFKUaBVNOgFoFkdAjqmdVWCEpXV9lChoBmgJaA9DCO8cylCVMXBAlIaUUpRoFU1uAWgWR0COqnDUExIrdX2UKGgGaAloD0MIQ+Vfy6u+cECUhpRSlGgVTSEBaBZHQI6ri+L3sX11fZQoaAZoCWgPQwihndMsUNBwQJSGlFKUaBVNQwJoFkdAjq0NGViWmnV9lChoBmgJaA9DCFN6ppeYZ3JAlIaUUpRoFU0ZAWgWR0COrqLUCq6wdX2UKGgGaAloD0MIRMNi1HUWc0CUhpRSlGgVTQUBaBZHQI6wsuUUwi91fZQoaAZoCWgPQwi77q1IDN5wQJSGlFKUaBVNzgFoFkdAjrF+9Jz1b3V9lChoBmgJaA9DCNqs+lzt2XJAlIaUUpRoFU1bAWgWR0COsxRuTA32dX2UKGgGaAloD0MILPLrh5hOckCUhpRSlGgVTdEBaBZHQI6zUVYZEUl1fZQoaAZoCWgPQwhqpnud1P9sQJSGlFKUaBVNgAFoFkdAjreRtYSxq3V9lChoBmgJaA9DCNy7Bn3pKnFAlIaUUpRoFUvmaBZHQI638zsQd0d1fZQoaAZoCWgPQwi70cd8AI5yQJSGlFKUaBVL8GgWR0COufDmbLEDdX2UKGgGaAloD0MI1Xq/0Y6xb0CUhpRSlGgVTU0BaBZHQI67PhOxjax1fZQoaAZoCWgPQwhlUkMbgK5wQJSGlFKUaBVNGwFoFkdAjrvcbrC3w3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fabe5e3a914654239f29c52d454c20c7f647e5cbc9755e4745c03256fe54d0db
|
3 |
+
size 144035
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7faa28694c20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faa28694cb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faa28694d40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faa28694dd0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7faa28694e60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7faa28694ef0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faa28694f80>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7faa2869c050>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faa2869c0e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faa2869c170>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7faa2869c200>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7faa286d6e70>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652109998.0180988,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBbsj32RGG641ZjOr4Xd7WYWsS6ChCBuQAAgD8AAAAA2smGvZ+H1Lv2oKG7rdpUPC14Ir1Q8TY9AACAPwAAgD8a9W69Qf4NPhCgrTzdC4a+ImpZPfJtmTsAAAAAAAAAAOaYgr02vz89XrquPUO6QL7Otg8972A+vQAAAAAAAAAATTt+PUifkLpYMVa3AEBaMGb2ubq93HQ2AACAPwAAgD+aWYO9w8VOuoYPrjpN4kM1Sjk1uyV1yrkAAIA/AACAP83n2j3bdq68Bs24voGuo73T0yU+tPQMvgAAgD8AAIA/uhE9PmlZL7zKiWo6r79BuBNblr0L5Y65AACAPwAAgD+goWo+WXcNP0L2p7185sG+ROI6PoIdtr0AAAAAAAAAAJq8Bz4IUVk/2gGFPurkFL+AOC0+dSrMPQAAAAAAAAAAU/4xvqeBPj/lPnM965HhvnMOGL72Ng0+AAAAAAAAAACaa4S9qTmsP+7Mgr5NN9u+6gDqvU0zBr4AAAAAAAAAADN7zbtdnqc/HnNAvVzF/b4aA/K75Q/VOQAAAAAAAAAAQO2Vva7Rn7oYLay4hrK7s6daNrk4vsQ3AACAPwAAgD9mtXM9j3INuvZT2zZEdB6xTi8luwUJALYAAIA/AACAP2ZlJz2kIR278koiPNBtxTy3hwO81w6oPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsMvwn64PcECUhpRSlIwBbJRNXwGMAXSUR0CN4ciQDFIedX2UKGgGaAloD0MIdeRIZ2DAbkCUhpRSlGgVTcYBaBZHQI3iAw22oeh1fZQoaAZoCWgPQwiiYMYULLxuQJSGlFKUaBVNEgFoFkdAjeR2H1vl2nV9lChoBmgJaA9DCMKKU62FSXJAlIaUUpRoFU0tAmgWR0CN5beVs1sMdX2UKGgGaAloD0MIECTvHApycUCUhpRSlGgVTd0CaBZHQI3mGd3B55Z1fZQoaAZoCWgPQwi2n4zxYYZxQJSGlFKUaBVNdQJoFkdAjenAxrSE13V9lChoBmgJaA9DCFa2D3nL629AlIaUUpRoFUvmaBZHQI3rRJ2+wkh1fZQoaAZoCWgPQwhS7dPxGNhiQJSGlFKUaBVN6ANoFkdAjexBHLA573V9lChoBmgJaA9DCLUzTG2pBHBAlIaUUpRoFU2fA2gWR0COOTobn5i3dX2UKGgGaAloD0MI71NVaCDebkCUhpRSlGgVTTEBaBZHQI46ZUkv9Lp1fZQoaAZoCWgPQwhIF5tWCk1SQJSGlFKUaBVLm2gWR0COPK1PWQOndX2UKGgGaAloD0MIMnVXdgFBcECUhpRSlGgVTScCaBZHQI5AbZxrBTJ1fZQoaAZoCWgPQwgVqTC2UBh0QJSGlFKUaBVNHAFoFkdAjkFDa4+bE3V9lChoBmgJaA9DCMnH7gLl1nFAlIaUUpRoFU0RAWgWR0COQVho/RmcdX2UKGgGaAloD0MID+85sBwJcUCUhpRSlGgVTWIBaBZHQI5HAouwost1fZQoaAZoCWgPQwiz7bQ14hNwQJSGlFKUaBVNNwFoFkdAjkfC3gDRt3V9lChoBmgJaA9DCME5I0r7NG5AlIaUUpRoFU1fAmgWR0COSN+bVjI8dX2UKGgGaAloD0MIZJKRs7AfcUCUhpRSlGgVTQcBaBZHQI5Ja/47A+J1fZQoaAZoCWgPQwhwJNBgUyVxQJSGlFKUaBVNZAFoFkdAjkmtD2Jzk3V9lChoBmgJaA9DCMdLN4lBU3JAlIaUUpRoFU0xAWgWR0COTRlCCz1LdX2UKGgGaAloD0MIbATidf1DckCUhpRSlGgVTR4BaBZHQI5NbSLIgeR1fZQoaAZoCWgPQwjumLoru9tuQJSGlFKUaBVL+WgWR0COUtm8M/hVdX2UKGgGaAloD0MIejnsvqPxcECUhpRSlGgVTacBaBZHQI5TEka/ATJ1fZQoaAZoCWgPQwiRDDm2XrZyQJSGlFKUaBVNXwFoFkdAjlNG4RVZLnV9lChoBmgJaA9DCBwIyQLmCHJAlIaUUpRoFU0QAWgWR0COU5Nfw7T2dX2UKGgGaAloD0MI6+V3mgyacUCUhpRSlGgVTUADaBZHQI5UPXNC7bt1fZQoaAZoCWgPQwjImSZsv9JxQJSGlFKUaBVNIANoFkdAjlSmwJPZZnV9lChoBmgJaA9DCP0xrU2jMnFAlIaUUpRoFU1xAWgWR0COVhAX2ugZdX2UKGgGaAloD0MIptWQuIdDcUCUhpRSlGgVS+9oFkdAjlaf8uSOinV9lChoBmgJaA9DCPcBSG2iY3FAlIaUUpRoFU0zA2gWR0COWBxx1gYxdX2UKGgGaAloD0MI4h+29CikckCUhpRSlGgVTVgBaBZHQI5dorz5GjN1fZQoaAZoCWgPQwiUMqmhTcNwQJSGlFKUaBVNWwFoFkdAjl/sqz7di3V9lChoBmgJaA9DCM1aCki70nBAlIaUUpRoFU1MAWgWR0COYoLAHmihdX2UKGgGaAloD0MIKNGSx5PUckCUhpRSlGgVTQYBaBZHQI5jsT6BRQ91fZQoaAZoCWgPQwjqknGM5EFvQJSGlFKUaBVNnQFoFkdAjmOuhK15SnV9lChoBmgJaA9DCIlFDDsMjnNAlIaUUpRoFU0nAWgWR0COZXFuNxVAdX2UKGgGaAloD0MI8DSZ8famcUCUhpRSlGgVTXQBaBZHQI5lhSeiBXl1fZQoaAZoCWgPQwjjjGFOkN1wQJSGlFKUaBVNHQFoFkdAjma0fgaWHHV9lChoBmgJaA9DCHhjQWFQEnJAlIaUUpRoFU0+AWgWR0COZ4iwjdHldX2UKGgGaAloD0MIaLPqc7UHcUCUhpRSlGgVTeQBaBZHQI5ooIyCWeJ1fZQoaAZoCWgPQwiun/6z5p5wQJSGlFKUaBVNhAFoFkdAjmyi83++/XV9lChoBmgJaA9DCFjlQuXfbHBAlIaUUpRoFU1yAWgWR0CObm1a4c3mdX2UKGgGaAloD0MIU67wLpfzbkCUhpRSlGgVTRYBaBZHQI5v39kz41x1fZQoaAZoCWgPQwjTZwdcl+VyQJSGlFKUaBVNcgFoFkdAjnAxCY1HfHV9lChoBmgJaA9DCNvf2R49JW9AlIaUUpRoFU2cAWgWR0COcF0Fr2xqdX2UKGgGaAloD0MIh4cwfhq7OECUhpRSlGgVS5hoFkdAjnENCiRGMHV9lChoBmgJaA9DCDV9dsD1ZnNAlIaUUpRoFUv6aBZHQI5yIKhL5AR1fZQoaAZoCWgPQwhJu9HHvAtyQJSGlFKUaBVNAAFoFkdAjnNw176YV3V9lChoBmgJaA9DCLL1DOGYO3BAlIaUUpRoFU1IAWgWR0COdIRxLkCFdX2UKGgGaAloD0MIAad38X6hbUCUhpRSlGgVS/ZoFkdAjnW55qubJHV9lChoBmgJaA9DCN5Wem32dHFAlIaUUpRoFU1bAWgWR0COeUB2fTTfdX2UKGgGaAloD0MIlBRYAFMEckCUhpRSlGgVTVIBaBZHQI56cJ8fFJh1fZQoaAZoCWgPQwji5H6HYt9wQJSGlFKUaBVL6mgWR0COfQwhW5pbdX2UKGgGaAloD0MIXoB9dGrKbUCUhpRSlGgVTX0BaBZHQI59Xq5byH51fZQoaAZoCWgPQwhsX0Av3FpwQJSGlFKUaBVNQQFoFkdAjoEVGkN4JXV9lChoBmgJaA9DCCRiSiRR32ZAlIaUUpRoFU3oA2gWR0COgmpEQXhwdX2UKGgGaAloD0MIN8KiIg4eckCUhpRSlGgVTQUBaBZHQI6DMfcN6Pd1fZQoaAZoCWgPQwi0lCwnoWhsQJSGlFKUaBVNLQFoFkdAjoODjR2KVXV9lChoBmgJaA9DCN/CuvFuenFAlIaUUpRoFUvbaBZHQI6ESC8OCoV1fZQoaAZoCWgPQwhjm1Q01rhGQJSGlFKUaBVLrGgWR0COhLAP/aQFdX2UKGgGaAloD0MIuMzpslgHcECUhpRSlGgVTVIBaBZHQI6Fcajvd/J1fZQoaAZoCWgPQwi/LO3U3FByQJSGlFKUaBVNHwNoFkdAjoWdVea8YnV9lChoBmgJaA9DCBRa1v2jGXFAlIaUUpRoFU3cAWgWR0COhr6GgzxgdX2UKGgGaAloD0MIFt16TU8NcUCUhpRSlGgVTSUBaBZHQI6HWEVWS2Z1fZQoaAZoCWgPQwjylxb1SR5NQJSGlFKUaBVLrWgWR0COiBQwblzVdX2UKGgGaAloD0MInUoGgOrVcECUhpRSlGgVTZcBaBZHQI6KLdgv1151fZQoaAZoCWgPQwgNjpJXZxFxQJSGlFKUaBVNFAFoFkdAjotAWSEDhnV9lChoBmgJaA9DCLzrbMh/BXJAlIaUUpRoFU2lAWgWR0COjXYHxBmgdX2UKGgGaAloD0MIeqnYmNdVcUCUhpRSlGgVTQABaBZHQI6RJL5AQg91fZQoaAZoCWgPQwi4eHjPgWNvQJSGlFKUaBVNHAJoFkdAjpFVhb4agnV9lChoBmgJaA9DCHHoLR6ebnJAlIaUUpRoFUvbaBZHQI6SF18stkF1fZQoaAZoCWgPQwjOiqiJvqhvQJSGlFKUaBVNDwFoFkdAjpLUihWYGHV9lChoBmgJaA9DCBjt8UK68nBAlIaUUpRoFU0NAWgWR0COk8g5imVJdX2UKGgGaAloD0MI2ERmLrBncECUhpRSlGgVTREBaBZHQI6UdpItlI51fZQoaAZoCWgPQwju6eqORT9xQJSGlFKUaBVNhQFoFkdAjpSMV+I/JXV9lChoBmgJaA9DCELPZtUndHBAlIaUUpRoFU0VAWgWR0COlXAzHjp+dX2UKGgGaAloD0MIFAfQ73tdckCUhpRSlGgVTV0BaBZHQI6XugezUqh1fZQoaAZoCWgPQwizJ4HNeU5xQJSGlFKUaBVNBgFoFkdAjptuPV/c33V9lChoBmgJaA9DCKBuoMA7gnJAlIaUUpRoFU28AWgWR0COm77KJVKgdX2UKGgGaAloD0MIsTBETp9ccECUhpRSlGgVTXQBaBZHQI6d4pKBd2R1fZQoaAZoCWgPQwgZHCWvztpyQJSGlFKUaBVNjAFoFkdAjp6jjrAxjHV9lChoBmgJaA9DCKadmssN6W5AlIaUUpRoFU0VAWgWR0COns9SMtK7dX2UKGgGaAloD0MISvHxCRn+ckCUhpRSlGgVTTEBaBZHQI6k4+r2g391fZQoaAZoCWgPQwiyRj1Eo29uQJSGlFKUaBVNPgFoFkdAjqkZBTn7pHV9lChoBmgJaA9DCKJCdXOxcnFAlIaUUpRoFU1sAWgWR0COqVWlMyrQdX2UKGgGaAloD0MIyeTUzjCVcECUhpRSlGgVTSoBaBZHQI6pm8CgbqB1fZQoaAZoCWgPQwiR8pNqH7xwQJSGlFKUaBVNOgFoFkdAjqmdVWCEpXV9lChoBmgJaA9DCO8cylCVMXBAlIaUUpRoFU1uAWgWR0COqnDUExIrdX2UKGgGaAloD0MIQ+Vfy6u+cECUhpRSlGgVTSEBaBZHQI6ri+L3sX11fZQoaAZoCWgPQwihndMsUNBwQJSGlFKUaBVNQwJoFkdAjq0NGViWmnV9lChoBmgJaA9DCFN6ppeYZ3JAlIaUUpRoFU0ZAWgWR0COrqLUCq6wdX2UKGgGaAloD0MIRMNi1HUWc0CUhpRSlGgVTQUBaBZHQI6wsuUUwi91fZQoaAZoCWgPQwi77q1IDN5wQJSGlFKUaBVNzgFoFkdAjrF+9Jz1b3V9lChoBmgJaA9DCNqs+lzt2XJAlIaUUpRoFU1bAWgWR0COsxRuTA32dX2UKGgGaAloD0MILPLrh5hOckCUhpRSlGgVTdEBaBZHQI6zUVYZEUl1fZQoaAZoCWgPQwhqpnud1P9sQJSGlFKUaBVNgAFoFkdAjreRtYSxq3V9lChoBmgJaA9DCNy7Bn3pKnFAlIaUUpRoFUvmaBZHQI638zsQd0d1fZQoaAZoCWgPQwi70cd8AI5yQJSGlFKUaBVL8GgWR0COufDmbLEDdX2UKGgGaAloD0MI1Xq/0Y6xb0CUhpRSlGgVTU0BaBZHQI67PhOxjax1fZQoaAZoCWgPQwhlUkMbgK5wQJSGlFKUaBVNGwFoFkdAjrvcbrC3w3VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
+
"n_epochs": 8,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d12e248ee11297bb2d63dfc48e1eec065ab2170fd08ac6bca8695b6bf15e7f2
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:002aa18d13b591169f4346d11f36c689ffaee2ffff5d9c10b1cd1c3b6d873c97
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:256e14d821ddea8a613ffd3bfe6d4636f68ed9b8f4eb0850b7d5199e1e38a3c2
|
3 |
+
size 200747
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 267.7558015680367, "std_reward": 16.85110063216919, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T15:43:58.545709"}
|