ansukla commited on
Commit
c81e4a6
1 Parent(s): 35d88f7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -23
README.md CHANGED
@@ -9,86 +9,92 @@ These models are:
9
  - 100x faster than using LLMs for similar tasks
10
  - Easy to fine tune
11
 
 
 
12
  ### To run the models:
13
  Use https://github.com/nlmatics/nlm-model-service
 
14
  ### To acccess the models
15
  Use https://github.com/nlmatics/nlm-utils
16
 
 
 
 
17
  ## List of Models
18
 
19
  Click on each model to see details:
20
 
21
  ### roberta.large.boolq
22
 
23
- Location: [roberta.large.boolq](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.boolq)
24
 
25
  Trained with MNLI + Boolq
26
 
27
- Trained by: Evan Li
28
 
29
- Application: Given a passage and a question, answer the question with yes, no or unsure.
30
 
31
- Training Process: https://blogs.nlmatics.com/2020/03/12/Boolean-Question-Answering-with-Neutral-Labels.html
32
 
33
  ### roberta.large.qa
34
  See folder: [roberta.large.qa](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.qa)
35
 
36
  Trained with SQuAD 2.0 + Custom Dataset preferring shorter spans better suited for data extraction
37
 
38
- Trained by: Ambika Sukla
39
 
40
- Application: Given a passage and a question, pick the shortest span from the passage that answers the question
41
 
42
- Training Process: start, end location head on the top of Roberta Base
43
 
44
  ### roberta.large.stsb
45
- See folder: [roberta.large.stsb](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.stsb)
46
 
47
  Trained with STSB dataset
48
 
49
- Trained by: Meta/Fairseq
50
 
51
- Application: Given two passages, return a score beteen 0 and 1 to evaluate their similarity
52
 
53
- Training Process: regression head on top of Roberta Base
54
 
55
  ### roberta.large.phraseqa
56
- See folder: [roberta.large.phraseqa](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.phraseqa)
57
 
58
  Trained with Roberta 2.0 with the question words removed from the question
59
 
60
- Trained By: Batya Stein
61
 
62
- Application: Given a passage and phrase (key), extract a value from the passage
63
 
64
- Training Process: https://blogs.nlmatics.com/2020/08/25/Optimizing-Transformer-Q&A-Models-for-Naturalistic-Search.html
65
 
66
  ### roberta.large.qasrl
67
 
68
- See folder: [roberta.large.qasrl](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.qasrl)
69
 
70
  Trained with QASRL dataset
71
 
72
- Application: Given a passage, get back values for who, what, when, where etc.
73
 
74
- Trained By: Nima Sheikholeslami
75
 
76
  ### roberta.large.qatype.lower.RothWithQ
77
 
78
- See folder: [roberta.large.qatype.lower.RothWithQ](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.qatype.lower.RothWithQ)
79
 
80
  Trained with the Roth Question Type dataset.
81
 
82
- Application: Given a question, return one of the answer types e.g. number, location. See the Roth dataset for full list.
83
 
84
- Trained By: Evan Li
85
 
86
  ### roberta.large.io_qa
87
 
88
  See folder: [roberta.large.io_qa](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.io_qa)
89
  Trained with SQuAD 2.0 dataset
90
 
91
- Trained By: Nima Sheikholeslami
92
 
93
- Training Process: Use io head to support multiple spans.
94
 
 
9
  - 100x faster than using LLMs for similar tasks
10
  - Easy to fine tune
11
 
12
+ All the models below were trained at Nlmatics Corp. from 2019-2023 with base model from: https://github.com/facebookresearch/fairseq/blob/main/examples/roberta/README.md
13
+
14
  ### To run the models:
15
  Use https://github.com/nlmatics/nlm-model-service
16
+
17
  ### To acccess the models
18
  Use https://github.com/nlmatics/nlm-utils
19
 
20
+ ### To train the models
21
+ TBD
22
+
23
  ## List of Models
24
 
25
  Click on each model to see details:
26
 
27
  ### roberta.large.boolq
28
 
29
+ *Location:* [roberta.large.boolq](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.boolq)
30
 
31
  Trained with MNLI + Boolq
32
 
33
+ *Trained by:* Evan Li
34
 
35
+ *Application:* Given a passage and a question, answer the question with yes, no or unsure.
36
 
37
+ *Training Process:* https://blogs.nlmatics.com/2020/03/12/Boolean-Question-Answering-with-Neutral-Labels.html
38
 
39
  ### roberta.large.qa
40
  See folder: [roberta.large.qa](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.qa)
41
 
42
  Trained with SQuAD 2.0 + Custom Dataset preferring shorter spans better suited for data extraction
43
 
44
+ *Trained by:* Ambika Sukla
45
 
46
+ *Application:* Given a passage and a question, pick the shortest span from the passage that answers the question
47
 
48
+ *Training Process:* start, end location head on the top of Roberta Base
49
 
50
  ### roberta.large.stsb
51
+ *See folder:* [roberta.large.stsb](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.stsb)
52
 
53
  Trained with STSB dataset
54
 
55
+ *Trained by:* Meta/Fairseq
56
 
57
+ *Application:* Given two passages, return a score beteen 0 and 1 to evaluate their similarity
58
 
59
+ *Training Process:* regression head on top of Roberta Base
60
 
61
  ### roberta.large.phraseqa
62
+ *See folder:* [roberta.large.phraseqa](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.phraseqa)
63
 
64
  Trained with Roberta 2.0 with the question words removed from the question
65
 
66
+ *Trained By:* Batya Stein
67
 
68
+ *Application:* Given a passage and phrase (key), extract a value from the passage
69
 
70
+ *Training Process:* https://blogs.nlmatics.com/2020/08/25/Optimizing-Transformer-Q&A-Models-for-Naturalistic-Search.html
71
 
72
  ### roberta.large.qasrl
73
 
74
+ *See folder:* [roberta.large.qasrl](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.qasrl)
75
 
76
  Trained with QASRL dataset
77
 
78
+ *Application:* Given a passage, get back values for who, what, when, where etc.
79
 
80
+ *Trained By:* Nima Sheikholeslami
81
 
82
  ### roberta.large.qatype.lower.RothWithQ
83
 
84
+ *See folder:* [roberta.large.qatype.lower.RothWithQ](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.qatype.lower.RothWithQ)
85
 
86
  Trained with the Roth Question Type dataset.
87
 
88
+ *Application:* Given a question, return one of the answer types e.g. number, location. See the Roth dataset for full list.
89
 
90
+ *Trained By:* Evan Li
91
 
92
  ### roberta.large.io_qa
93
 
94
  See folder: [roberta.large.io_qa](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.io_qa)
95
  Trained with SQuAD 2.0 dataset
96
 
97
+ *Trained By:* Nima Sheikholeslami
98
 
99
+ *Training Process:* Use io head to support multiple spans.
100