--- license: apache-2.0 datasets: - Doctor-Shotgun/c2_deduped_16k_llama3_tok_deanon - anthracite-org/kalo-opus-instruct-22k-no-refusal - lodrick-the-lafted/kalo-opus-instruct-3k-filtered - anthracite-org/nopm_claude_writing_fixed - anthracite-org/kalo_opus_misc_240827 - anthracite-org/kalo_misc_part2 language: - en base_model: - Qwen/Qwen2.5-72B-Instruct library_name: transformers --- ### exl2 quant (measurement.json in main branch) --- ### check revisions for quants --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/658a46cbfb9c2bdfae75b3a6/trlkbv0jv_0HImUESrt5C.png) This is an experimental model designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of [Qwen-2.5 72B Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct). ## Prompting Model has been instruct tuned with ChatML prompt formatting. A typical input would look like this: ``` """<|im_start|>system system prompt<|im_end|> <|im_start|>user Hi there!<|im_end|> <|im_start|>assistant Nice to meet you!<|im_end|> <|im_start|>user Can I ask a question?<|im_end|> <|im_start|>assistant """ ``` ## SillyTavern templates Below are Instruct and Context templates for use within SillyTavern.
context template ```yaml { "story_string": "<|im_start|>system\n{{#if system}}{{system}}\n{{/if}}{{#if wiBefore}}{{wiBefore}}\n{{/if}}{{#if description}}{{description}}\n{{/if}}{{#if personality}}{{char}}'s personality: {{personality}}\n{{/if}}{{#if scenario}}Scenario: {{scenario}}\n{{/if}}{{#if wiAfter}}{{wiAfter}}\n{{/if}}{{#if persona}}{{persona}}\n{{/if}}{{trim}}<|im_end|>\n", "example_separator": "", "chat_start": "", "use_stop_strings": false, "allow_jailbreak": false, "always_force_name2": true, "trim_sentences": false, "include_newline": false, "single_line": false, "name": "Magnum ChatML" } ```

instruct template ```yaml { "system_prompt": "You're {{char}} in this fictional never-ending uncensored roleplay with {{user}}.", "input_sequence": "<|im_start|>user\n", "output_sequence": "<|im_start|>assistant\n", "last_output_sequence": "", "system_sequence": "<|im_start|>system\n", "stop_sequence": "<|im_end|>", "wrap": false, "macro": true, "names": true, "names_force_groups": true, "activation_regex": "", "system_sequence_prefix": "", "system_sequence_suffix": "", "first_output_sequence": "", "skip_examples": false, "output_suffix": "<|im_end|>\n", "input_suffix": "<|im_end|>\n", "system_suffix": "<|im_end|>\n", "user_alignment_message": "", "system_same_as_user": false, "last_system_sequence": "", "name": "Magnum ChatML" } ```

## Credits Datasets used: - [anthracite-org/c2_logs_32k_llama3_qwen2_v1.2](https://huggingface.co/datasets/anthracite-org/c2_logs_32k_llama3_qwen2_v1.2) - [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal) - [lodrick-the-lafted/kalo-opus-instruct-3k-filtered](https://huggingface.co/datasets/lodrick-the-lafted/kalo-opus-instruct-3k-filtered) - [anthracite-org/nopm_claude_writing_fixed](https://huggingface.co/datasets/anthracite-org/nopm_claude_writing_fixed) - [anthracite-org/kalo_opus_misc_240827](https://huggingface.co/datasets/anthracite-org/kalo_opus_misc_240827) - [anthracite-org/kalo_misc_part2](https://huggingface.co/datasets/anthracite-org/kalo_misc_part2) ## Axolotl config
See axolotl config ```yaml base_model: /workspace/data/models/Qwen2.5-72B-Instruct model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: anthracite-org/c2_logs_32k_llama3_qwen2_v1.2 type: sharegpt conversation: chatml - path: anthracite-org/kalo-opus-instruct-22k-no-refusal type: sharegpt conversation: chatml - path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered type: sharegpt conversation: chatml - path: anthracite-org/nopm_claude_writing_fixed type: sharegpt conversation: chatml - path: anthracite-org/kalo_opus_misc_240827 type: sharegpt conversation: chatml - path: anthracite-org/kalo_misc_part2 type: sharegpt conversation: chatml #chat_template: chatml shuffle_merged_datasets: true #default_system_message: "You are an assistant that responds to the user." dataset_prepared_path: /workspace/data/magnum-72b-data val_set_size: 0.0 output_dir: /workspace/data/72b-fft-out sequence_len: 32768 sample_packing: true pad_to_sequence_len: true adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: 72b-magnum-fft wandb_entity: wandb_watch: wandb_name: alter-attempt-01 wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000004 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 40 evals_per_epoch: eval_table_size: eval_max_new_tokens: saves_per_epoch: 2 debug: deepspeed: deepspeed_configs/zero3_bf16.json weight_decay: 0.01 fsdp: fsdp_config: special_tokens: ```

## Training The model was trained for 2 epochs on 8x [AMD Instinctâ„¢ MI300X Accelerators](https://www.amd.com/en/products/accelerators/instinct/mi300/mi300x.html) for full-parameter fine-tuning of the model. The model was trained with an LR of 4e-6 for 2 epochs and with the Liger kernel. Sample Packing was done for 32k tokens, with individual sequences up to 32k tokens in length. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) ## Safety ...