antitheft159 commited on
Commit
b85fcf0
·
verified ·
1 Parent(s): 73ada57

Upload holowealth.py

Browse files
Files changed (1) hide show
  1. holowealth.py +54 -0
holowealth.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """HoloWealth
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1lObCKG_uGdcldMmKDoHnuSd34OUy4EmH
8
+ """
9
+
10
+ import torch
11
+ import numpy as np
12
+ import matplotlib.pyplot as plt
13
+ from matplotlib.animation import FuncAnimation
14
+
15
+ waveform_size = 100
16
+ frequency = 0.5
17
+ amplitude = 5.0
18
+ direction_angle = np.pi / 4
19
+ total_time_hours = 24
20
+ time_steps = 240
21
+
22
+ time_interval = total_time_hours / time_steps
23
+
24
+ x = torch.linspace(-waveform_size // 2, waveform_size // 2, waveform_size)
25
+ y = torch.linspace(-waveform_size // 2, waveform_size // 2, waveform_size)
26
+ X, Y = torch.meshgrid(x, y)
27
+
28
+ def infinite_waveform(t):
29
+ return amplitude * torch.cos(2 * np.pi * frequency * (X * torch.cos(direction) + Y * torch.sin(direction_angle)) + 2 * np.pi * t)
30
+
31
+ wealth_data = torch.rand(waveform_size, waveform_size) * 100
32
+ total_wealth_energy = wealth_data ** 2
33
+
34
+ noise_mask = torch.randn(waveform_size, waveform_size) * 0.1
35
+ protected_wealth_energy = total_wealth_energy + noise_mask
36
+
37
+ wealth_energy_per_time = protected_wealth_energy / time_steps
38
+
39
+ fig, ax = plt.subplots(figsize=(8, 6))
40
+ signal_plot = ax.imshow(torch.zeros(waveform_size, waveform_size).numpy(), cmap='plasma', origin='lower')
41
+ plt.colorbar(signal_plot, ax=ax, label='Signal Intensity')
42
+ ax.set_title("HoloWealth")
43
+ ax.set_xlabel('X Axis')
44
+ ax.set_ylabel('Y Axis')
45
+
46
+ def update(t):
47
+ wave = infinite_waveform(t * time_interval)
48
+ combined_signal = wave * wealth_energy_per_time
49
+ signal_plot.set_data(combined_signal.numpy())
50
+ ax.set_title(f"Signal at Time Step: {t}/{time_steps}")
51
+
52
+ ani = FuncAnimation(fig, update, frames=time_steps, interval=100, repeat=False)
53
+
54
+ plt.show()