File size: 4,276 Bytes
569d65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79de665
569d65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import seaborn as sns

class WaveformVisualizer:
  def __init__(self, processor, input_data, sampling_rate=1000):
    self.processor = processor
    self.input_data = input_data
    self.sampling_rate sampling_rate
    self.time = np.arange(input_data.shape[1]) / sampling_rate

class SecureWaveformProcessor(nn.Module):
  def __init__(self, input_size, hidden_size, sampling_rate=1000):
      super(SecureWaveformProcessor, self).__init__()
      self.layer1 = nn.Linear(input_size, hidden_size)
      self.layer2 = nn.Linear(hidden_size, input_size)
      self.sampling_rate = sampling_rate

  def forward(self, x):
      x = torch.relu(self.layer1(x))
      x = self.layer2(x)
      return x

  def plot_waveforms(self):
      processed_data = self.forward(input_data)
      self.time = np.arange(input_data.shape[1]) / self.sampling_rate

  def forward(self, x):
      x = torch.relu(self.layer1(x))
      x = self.layer2(x)
      return x

  def plot_waveforms(self):
      processed_data = self.forward(input_data)
      self.time = np.arange(input_data.shape[1]) / self.sampling_rate
      self.input_data = input_data

      fig = plt.figure(figsize=(15, 10))
      gs = fig.add_gridspec(2, 2, hspace=0.3, wspace=0.3)

      ax1 = fig.add_subplot(gs[0, 0])
      self._plot_waveform(self.input_data[0], ax1, "Original Data")

      ax2 = fig.add_subplot(gs[0, 1])
      self.plot_waveform(processed_data[0], ax2, "Processed Data")

      ax3 = fig.add_subplot(gs[1, 0])
      self._plot_spectrogram(self.input_data[0], ax3, "Original Visual")

      ax4 = fig.add_subplot(gs[1, 1])
      self._plot_spectrogram(processed_data[0], ax4, "Processed Visual")

      plt.tight_layout()
      return fig

  def _plot_waveform(self,data, ax, title):
      data_np = data.detach().numpy()
      ax.plot(self.time, data_np, 'b-', linewidth=1)
      ax.set_title(title)
      ax.set_xlabel('Time (s)')
      ax.set_ylabel('Amplitude')
      ax.grid(True)

  def _plot_spectrogram(self, data, ax, title):
      data_np = data.detach().numpy
      ax.specgram(data,np, Fs=self.sampling_rate, cmap='viridis')
      ax.set_title(title)
      ax.set_xlabel('Time (s)')
      ax.set_ylabel('Frequency (Hz)')

  def animate_processing(self, frame=50):
      fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8))

      processed_data = self.forward(self.input_data)
      data_original = self.input_data[0].detach().numpy()
      data_processed = processed_data[0].detach().numpy()

      line1, = ax1.plot([], [], 'b-', label='Original')
      line2, = ax2.plot([], [], 'r-', label='Processed')

  def init():
      ax1.set_xlim(0, self.time[-1])
      ax1.set_ylim(data_original.min()*1.2, data_original.max()*1.2)
      ax2.set_xlim(0, self.time[-1])
      ax2.set_ylim(data_processed.min()*1.2, data_processed.max()*1.2)

      ax1.set_title('Original Data')
      ax2.set_title('Processed Visual')
      ax1.grid(True)
      ax2.grid(True)
      ax1.legend()
      ax2.legend()

      return line1, line2

  def animate(frame):
      idx = int((frame / frames) * len(self.time))
      line1.set_data(self.time[:idx], data_original[:idx])
      line2.set_data(self.time[:idx], data_processed[:idx])
      return line1, line2

  anim = FuncAnimation(fig, animate, frames=frames,
                      init_func=init, blit=True,
                      interval=50)

  plt.tight_layout()
  return anim

__name__== "__main__":
  input_size = 1000
  batch_size = 32
  sampling_rate = 1000

  processor = SecureWaveformProcessor(input_size=input_size, hidden_size=64, sampling_rate=sampling_rate)


  t = np.linspace(0, 10, input_size)
  base_signal = np.sin(2 * np.pi * 1 * t) + 0.5 * np.sin(2 * np.pi * 2 * t)
  noise = np.random.normal(0, 0.1, input_size)
  signal = base_signal + noise

  input_data = torch.tensor(np.tile(signal, (batch_size, 1)), dtype=torch.float32)
  processor = SecureWaveformProcessor(input_size=input_size, hidden_size=64)

  visualizer = WaveformVisualizer(processor, input_data)

  fig_static = processor.plot_waveforms()
  plt.show()

  anim = processor.animate_processing()
  plt.show()