File size: 10,297 Bytes
4306d2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
from transformers import PreTrainedModel, AutoConfig, AutoModelForCausalLM
from .configuration_lumenspark import LumensparkConfig
from torch import nn
import torch
import math
# ----------------------------
# Low-Rank Linear Layer Implementation
# ----------------------------
class LowRankLinear(nn.Module):
def __init__(self, in_features, out_features, rank, init_std=0.02):
super().__init__()
self.U = nn.Linear(in_features, rank, bias=False)
self.V = nn.Linear(rank, out_features, bias=False)
nn.init.normal_(self.U.weight, std=init_std)
nn.init.normal_(self.V.weight, std=init_std)
def forward(self, x):
return self.V(self.U(x))
# ----------------------------
# Lumenspark Self-Attention Implementation
# ----------------------------
class LumensparkSelfAttention(nn.Module):
def __init__(self, embed_dim, num_heads, head_dim=None, dropout=0.0):
super().__init__()
assert (embed_dim % num_heads) == 0, 'Embedding dimension must be divisible by the number of heads'
self.num_heads = num_heads
self.embed_dim = embed_dim
self.head_dim = head_dim if head_dim is not None else embed_dim // num_heads
self.q_proj = nn.Linear(embed_dim, self.head_dim * num_heads)
self.k_proj = nn.Linear(embed_dim, self.head_dim * num_heads)
self.v_proj = nn.Linear(embed_dim, self.head_dim * num_heads)
self.dropout_layer = nn.Dropout(dropout)
self.output_transform = nn.Linear(self.head_dim * num_heads, embed_dim)
def stable_softmax(self, x, dim=-1):
x_max = torch.max(x, dim=dim, keepdim=True)[0]
exp_x = torch.exp(x - x_max)
return exp_x / (torch.sum(exp_x, dim=dim, keepdim=True) + 1e-6)
def forward(self, inputs, attention_mask=None):
batch_size, seq_len, _ = inputs.shape
q = self.q_proj(inputs).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
k = self.k_proj(inputs).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
v = self.v_proj(inputs).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
attention_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attention_scores = attention_scores.masked_fill(attention_mask == 0, float('-inf'))
attention_weights = self.stable_softmax(attention_scores, dim=-1)
attention_weights = self.dropout_layer(attention_weights)
attention_output = torch.matmul(attention_weights, v)
attention_output = attention_output.transpose(1, 2).contiguous().view(batch_size, seq_len, self.embed_dim)
return self.output_transform(attention_output)
# ----------------------------
# Define Lumenspark Model Wrapper
# ----------------------------
class LumensparkModel(PreTrainedModel):
config_class = LumensparkConfig
def __init__(self, config):
super().__init__(config)
self.config = config
# Token and position embeddings
self.token_embedding = nn.Embedding(config.vocab_size, config.embed_dim)
self.position_embedding = nn.Embedding(config.seq_length, config.embed_dim)
# Lumenspark transformer encoder layers with prenormalization and LayerScale
self.layers = nn.ModuleList()
for _ in range(config.depth):
layer = nn.ModuleDict({
"norm1": nn.LayerNorm(config.embed_dim),
"attn": LumensparkSelfAttention(
embed_dim=config.embed_dim,
num_heads=config.heads,
head_dim=config.embed_dim // config.heads,
dropout=config.dropout
),
"norm2": nn.LayerNorm(config.embed_dim),
"ffn": nn.Sequential(
LowRankLinear(config.embed_dim, config.embed_dim * 4, rank=config.rank),
nn.GELU(),
nn.Dropout(config.dropout),
LowRankLinear(config.embed_dim * 4, config.embed_dim, rank=config.rank),
nn.Dropout(config.dropout)
),
})
# Assign the parameters directly as attributes
layer.layer_scale_attn = nn.Parameter(torch.ones(config.embed_dim) * 1e-2)
layer.layer_scale_ffn = nn.Parameter(torch.ones(config.embed_dim) * 1e-2)
self.layers.append(layer)
# Final LayerNorm layer
self.final_norm = nn.LayerNorm(config.embed_dim)
# Feed-forward output layer
self.fc_out = nn.Linear(config.embed_dim, config.vocab_size)
self.dropout = nn.Dropout(config.dropout)
# Initialize model weights
self.init_weights()
@staticmethod
def top_k_top_p_filtering(logits, top_k=0, top_p=1.0, filter_value=-float('Inf')):
"""
Filter a distribution of logits using top-k and/or top-p filtering.
"""
top_k = min(top_k, logits.size(-1))
if top_k > 0:
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[:, indices_to_remove] = filter_value
return logits
def generate(self, input_ids, attention_mask=None, max_length=160, min_length=20, temperature=0.6, top_k=50, top_p=0.9, repetition_penalty=1.1, do_sample=True):
"""
Text generation method that handles auto-regressive generation with repetition penalty.
Input `input_ids` should be a tensor. Returns generated tokens.
"""
self.eval()
device = input_ids.device
generated_tokens = input_ids
for _ in range(max_length - input_ids.size(1)):
# Forward pass for logits
outputs = self.forward(input_ids=generated_tokens, attention_mask=attention_mask)
logits = outputs["logits"][:, -1, :]
# Adjust logits by temperature
logits = logits / temperature
# Apply repetition penalty by reducing logits of tokens already generated
for token in set(generated_tokens.view(-1).tolist()):
logits[:, token] /= repetition_penalty
# Apply sampling with top-k and top-p
if do_sample:
filtered_logits = LumensparkModel.top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
probs = torch.softmax(filtered_logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
else:
next_token = torch.argmax(logits, dim=-1, keepdim=True)
# Append the generated token
generated_tokens = torch.cat((generated_tokens, next_token), dim=1)
attention_mask = torch.ones_like(generated_tokens).to(device)
# Ensure min_length before stopping generation with end-of-sequence (EOS) token
if next_token.item() == self.config.eos_token_id and generated_tokens.size(1) < min_length:
continue
if next_token.item() == self.config.eos_token_id:
break
return generated_tokens
def forward(self, input_ids, attention_mask=None, labels=None):
"""
Forward pass of the model. If `labels` are provided, computes the loss.
"""
batch_size, seq_length = input_ids.size()
# Generate position ids for input tokens
position_ids = torch.arange(0, seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand(batch_size, seq_length)
# Embed tokens and positions
token_embeddings = self.token_embedding(input_ids)
position_embeddings = self.position_embedding(position_ids)
# Combine token and position embeddings
embeddings = token_embeddings + position_embeddings
embeddings = self.dropout(embeddings)
# Create causal mask for self-attention to ensure autoregressive behavior
device = embeddings.device
causal_mask = torch.tril(torch.ones((seq_length, seq_length), device=device)).unsqueeze(0).unsqueeze(0)
# Combine with attention mask if provided
combined_mask = causal_mask if attention_mask is None else attention_mask[:, None, None, :].float() * causal_mask
# Pass through transformer layers
for layer in self.layers:
embeddings_norm = layer["norm1"](embeddings)
attn_output = layer["attn"](embeddings_norm, attention_mask=combined_mask)
embeddings = embeddings + layer.layer_scale_attn * attn_output
embeddings_norm = layer["norm2"](embeddings)
ffn_output = layer["ffn"](embeddings_norm)
embeddings = embeddings + layer.layer_scale_ffn * ffn_output
# Final normalization and output projection to logits
embeddings = self.final_norm(embeddings)
logits = self.fc_out(embeddings)
# Compute loss if labels are provided
loss = None
if labels is not None:
shift_logits = logits[:, :-1, :].contiguous().view(-1, self.config.vocab_size)
shift_labels = labels[:, 1:].contiguous().view(-1)
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits, shift_labels)
return {"loss": loss, "logits": logits}
# Register LumensparkForCausalLM with AutoModelForCausalLM
AutoConfig.register("lumenspark", LumensparkConfig)
AutoModelForCausalLM.register(LumensparkConfig, LumensparkModel)
|