Upload 2 files
Browse files- configuration_lumenspark.py +52 -0
- modeling_lumenspark.py +295 -0
configuration_lumenspark.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
# ----------------------------
|
4 |
+
# Define Lumenspark Configuration
|
5 |
+
# ----------------------------
|
6 |
+
|
7 |
+
class LumensparkConfig(PretrainedConfig):
|
8 |
+
"""
|
9 |
+
Configuration class for the Lumenspark model.
|
10 |
+
Stores model hyperparameters like sequence length, embedding dimension, number of layers, and others.
|
11 |
+
"""
|
12 |
+
model_type = "lumenspark"
|
13 |
+
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
seq_length=768,
|
17 |
+
vocab_size=50257,
|
18 |
+
embed_dim=768,
|
19 |
+
depth=8,
|
20 |
+
heads=12,
|
21 |
+
dropout=1/17,
|
22 |
+
k=384,
|
23 |
+
rank=256,
|
24 |
+
**kwargs
|
25 |
+
):
|
26 |
+
super().__init__(**kwargs)
|
27 |
+
self.vocab_size = vocab_size
|
28 |
+
self.embed_dim = embed_dim
|
29 |
+
self.depth = depth
|
30 |
+
self.heads = heads
|
31 |
+
self.seq_length = seq_length
|
32 |
+
self.dropout = dropout
|
33 |
+
self.k = k
|
34 |
+
self.rank = rank
|
35 |
+
|
36 |
+
def to_dict(self):
|
37 |
+
"""
|
38 |
+
Converts the configuration parameters to a dictionary format.
|
39 |
+
Useful for saving the configuration or inspecting model settings.
|
40 |
+
"""
|
41 |
+
output = super().to_dict()
|
42 |
+
output.update({
|
43 |
+
"vocab_size": self.vocab_size,
|
44 |
+
"embed_dim": self.embed_dim,
|
45 |
+
"depth": self.depth,
|
46 |
+
"heads": self.heads,
|
47 |
+
"seq_length": self.seq_length,
|
48 |
+
"dropout": self.dropout,
|
49 |
+
"k": self.k,
|
50 |
+
"rank": self.rank,
|
51 |
+
})
|
52 |
+
return output
|
modeling_lumenspark.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from lumenspark.configuration_lumenspark import LumensparkConfig
|
2 |
+
from transformers import PreTrainedModel, GPT2Tokenizer
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
+
from safetensors import safe_open
|
5 |
+
from torch import nn
|
6 |
+
import torch
|
7 |
+
import math
|
8 |
+
import os
|
9 |
+
|
10 |
+
# ----------------------------
|
11 |
+
# Low-Rank Linear Layer Implementation
|
12 |
+
# ----------------------------
|
13 |
+
|
14 |
+
class LowRankLinear(nn.Module):
|
15 |
+
"""
|
16 |
+
A low-rank linear layer that factorizes a standard linear layer into two smaller ones.
|
17 |
+
This allows for reduced parameter count and faster computation.
|
18 |
+
"""
|
19 |
+
def __init__(self, in_features, out_features, rank, init_std=0.02):
|
20 |
+
super().__init__()
|
21 |
+
self.U = nn.Linear(in_features, rank, bias=False)
|
22 |
+
self.V = nn.Linear(rank, out_features, bias=False)
|
23 |
+
nn.init.normal_(self.U.weight, std=init_std)
|
24 |
+
nn.init.normal_(self.V.weight, std=init_std)
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
"""
|
28 |
+
Forward pass through two low-rank linear layers (U and V).
|
29 |
+
"""
|
30 |
+
return self.V(self.U(x))
|
31 |
+
|
32 |
+
# ----------------------------
|
33 |
+
# Lumenspark Self-Attention Implementation
|
34 |
+
# ----------------------------
|
35 |
+
|
36 |
+
class LumensparkSelfAttention(nn.Module):
|
37 |
+
"""
|
38 |
+
Custom self-attention mechanism for the Lumenspark model.
|
39 |
+
It uses low-rank approximations to reduce computational cost and memory usage.
|
40 |
+
"""
|
41 |
+
def __init__(self, embed_dim, num_heads, head_dim=None, dropout=0.0):
|
42 |
+
super().__init__()
|
43 |
+
assert (embed_dim % num_heads) == 0, 'Embedding dimension must be divisible by the number of heads'
|
44 |
+
|
45 |
+
self.num_heads = num_heads
|
46 |
+
self.embed_dim = embed_dim
|
47 |
+
self.head_dim = head_dim if head_dim is not None else embed_dim // num_heads
|
48 |
+
|
49 |
+
# Query, Key and Value transformations using LowRankLinear
|
50 |
+
self.q_proj = nn.Linear(embed_dim, self.head_dim * num_heads)
|
51 |
+
self.k_proj = nn.Linear(embed_dim, self.head_dim * num_heads)
|
52 |
+
self.v_proj = nn.Linear(embed_dim, self.head_dim * num_heads)
|
53 |
+
|
54 |
+
self.dropout_layer = nn.Dropout(dropout)
|
55 |
+
self.output_transform = nn.Linear(self.head_dim * num_heads, embed_dim)
|
56 |
+
|
57 |
+
def stable_softmax(self, x, dim=-1):
|
58 |
+
# Subtract max for numerical stability
|
59 |
+
x_max = torch.max(x, dim=dim, keepdim=True)[0]
|
60 |
+
exp_x = torch.exp(x - x_max)
|
61 |
+
return exp_x / (torch.sum(exp_x, dim=dim, keepdim=True) + 1e-6)
|
62 |
+
|
63 |
+
def forward(self, inputs, attention_mask=None):
|
64 |
+
batch_size, seq_len, _ = inputs.shape
|
65 |
+
|
66 |
+
q = self.q_proj(inputs).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
67 |
+
k = self.k_proj(inputs).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
68 |
+
v = self.v_proj(inputs).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
69 |
+
|
70 |
+
attention_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
71 |
+
|
72 |
+
if attention_mask is not None:
|
73 |
+
attention_scores = attention_scores.masked_fill(attention_mask == 0, float('-inf'))
|
74 |
+
|
75 |
+
attention_weights = self.stable_softmax(attention_scores, dim=-1)
|
76 |
+
attention_weights = self.dropout_layer(attention_weights)
|
77 |
+
|
78 |
+
attention_output = torch.matmul(attention_weights, v)
|
79 |
+
attention_output = attention_output.transpose(1, 2).contiguous().view(batch_size, seq_len, self.embed_dim)
|
80 |
+
return self.output_transform(attention_output)
|
81 |
+
|
82 |
+
# ----------------------------
|
83 |
+
# Define Lumenspark Model Wrapper
|
84 |
+
# ----------------------------
|
85 |
+
|
86 |
+
class LumensparkModel(PreTrainedModel):
|
87 |
+
config_class = LumensparkConfig
|
88 |
+
|
89 |
+
def __init__(self, config, tokenizer):
|
90 |
+
super().__init__(config)
|
91 |
+
self.config = config
|
92 |
+
self.tokenizer = tokenizer
|
93 |
+
|
94 |
+
# Token and position embeddings
|
95 |
+
self.token_embedding = nn.Embedding(config.vocab_size, config.embed_dim)
|
96 |
+
self.position_embedding = nn.Embedding(config.seq_length, config.embed_dim)
|
97 |
+
|
98 |
+
# Lumenspark transformer encoder layers with prenormalization and LayerScale
|
99 |
+
self.layers = nn.ModuleList()
|
100 |
+
for _ in range(config.depth):
|
101 |
+
layer = nn.ModuleDict({
|
102 |
+
"norm1": nn.LayerNorm(config.embed_dim),
|
103 |
+
"attn": LumensparkSelfAttention(
|
104 |
+
embed_dim=config.embed_dim,
|
105 |
+
num_heads=config.heads,
|
106 |
+
head_dim=config.embed_dim // config.heads,
|
107 |
+
dropout=config.dropout
|
108 |
+
),
|
109 |
+
"norm2": nn.LayerNorm(config.embed_dim),
|
110 |
+
"ffn": nn.Sequential(
|
111 |
+
LowRankLinear(config.embed_dim, config.embed_dim * 4, rank=config.rank),
|
112 |
+
nn.GELU(),
|
113 |
+
nn.Dropout(config.dropout),
|
114 |
+
LowRankLinear(config.embed_dim * 4, config.embed_dim, rank=config.rank),
|
115 |
+
nn.Dropout(config.dropout)
|
116 |
+
),
|
117 |
+
})
|
118 |
+
# Assign the parameters directly as attributes
|
119 |
+
layer.layer_scale_attn = nn.Parameter(torch.ones(config.embed_dim) * 1e-2)
|
120 |
+
layer.layer_scale_ffn = nn.Parameter(torch.ones(config.embed_dim) * 1e-2)
|
121 |
+
self.layers.append(layer)
|
122 |
+
|
123 |
+
# Final LayerNorm layer
|
124 |
+
self.final_norm = nn.LayerNorm(config.embed_dim)
|
125 |
+
|
126 |
+
# Feed-forward output layer
|
127 |
+
self.fc_out = nn.Linear(config.embed_dim, config.vocab_size)
|
128 |
+
self.dropout = nn.Dropout(config.dropout)
|
129 |
+
|
130 |
+
# Initialize model weights
|
131 |
+
self.init_weights()
|
132 |
+
|
133 |
+
@classmethod
|
134 |
+
def from_pretrained(cls, model_id, cache_dir=None, **kwargs):
|
135 |
+
"""
|
136 |
+
Downloads the pretrained weights from Hugging Face, and loads the GPT-2 tokenizer.
|
137 |
+
"""
|
138 |
+
# Set cache directory for storing models
|
139 |
+
cache_dir = cache_dir or os.path.join(os.getcwd(), "lumenspark_weights")
|
140 |
+
|
141 |
+
# Download model weights in `.safetensors` format
|
142 |
+
weight_path = hf_hub_download(repo_id=model_id, filename="model.safetensors", cache_dir=cache_dir)
|
143 |
+
|
144 |
+
# Load the configuration
|
145 |
+
config_path = hf_hub_download(repo_id=model_id, filename="config.json", cache_dir=cache_dir)
|
146 |
+
config = LumensparkConfig.from_json_file(config_path)
|
147 |
+
|
148 |
+
# Load GPT-2 tokenizer directly from Hugging Face
|
149 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
150 |
+
|
151 |
+
# Instantiate the model
|
152 |
+
model = cls(config, tokenizer=tokenizer)
|
153 |
+
|
154 |
+
# Load state_dict from safetensors file
|
155 |
+
with safe_open(weight_path, framework="pt") as f:
|
156 |
+
state_dict = {k: f.get_tensor(k) for k in f.keys()}
|
157 |
+
|
158 |
+
model.load_state_dict(state_dict)
|
159 |
+
|
160 |
+
return model
|
161 |
+
|
162 |
+
@staticmethod
|
163 |
+
def top_k_top_p_filtering(logits, top_k=0, top_p=1.0, filter_value=-float('Inf')):
|
164 |
+
"""
|
165 |
+
Filter a distribution of logits using top-k and/or top-p filtering.
|
166 |
+
"""
|
167 |
+
top_k = min(top_k, logits.size(-1))
|
168 |
+
if top_k > 0:
|
169 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
170 |
+
logits[indices_to_remove] = filter_value
|
171 |
+
|
172 |
+
if top_p < 1.0:
|
173 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
174 |
+
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
175 |
+
|
176 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
177 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
178 |
+
sorted_indices_to_remove[..., 0] = 0
|
179 |
+
|
180 |
+
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
181 |
+
logits[:, indices_to_remove] = filter_value
|
182 |
+
return logits
|
183 |
+
|
184 |
+
def generate(self, text, max_length=160, min_length=20, temperature=0.6, top_k=50, top_p=0.9, repetition_penalty=1.1, do_sample=True):
|
185 |
+
"""
|
186 |
+
Text generation method that handles auto-regressive generation with repetition penalty.
|
187 |
+
The input is a string, and the output is a string generated by the model.
|
188 |
+
"""
|
189 |
+
self.eval() # Set model to evaluation mode
|
190 |
+
# Tokenize input text using GPT-2 tokenizer
|
191 |
+
input_ids = torch.tensor([self.tokenizer.encode(text)], dtype=torch.long).to(self.device)
|
192 |
+
|
193 |
+
# Initialize attention mask
|
194 |
+
attention_mask = torch.ones_like(input_ids).to(self.device)
|
195 |
+
|
196 |
+
generated_tokens = input_ids
|
197 |
+
|
198 |
+
for _ in range(max_length - input_ids.size(1)):
|
199 |
+
outputs = self.forward(input_ids=generated_tokens, attention_mask=attention_mask)
|
200 |
+
logits = outputs["logits"][:, -1, :]
|
201 |
+
|
202 |
+
# Adjust temperature for randomness
|
203 |
+
logits = logits / temperature
|
204 |
+
|
205 |
+
# Apply repetition penalty: reduce logits of tokens that have already been generated
|
206 |
+
for token in set(generated_tokens.view(-1).tolist()):
|
207 |
+
logits[:, token] /= repetition_penalty # Penalize repeated tokens
|
208 |
+
|
209 |
+
# Apply top-k and top-p sampling to select the next token
|
210 |
+
if do_sample:
|
211 |
+
filtered_logits = LumensparkModel.top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
212 |
+
probs = torch.softmax(filtered_logits, dim=-1)
|
213 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
214 |
+
else:
|
215 |
+
next_token = torch.argmax(logits, dim=-1, keepdim=True)
|
216 |
+
|
217 |
+
# Append the generated token
|
218 |
+
generated_tokens = torch.cat((generated_tokens, next_token), dim=1)
|
219 |
+
# Update attention mask
|
220 |
+
attention_mask = torch.ones_like(generated_tokens).to(self.device)
|
221 |
+
|
222 |
+
# Prevent early stopping by ensuring min_length is reached before allowing EOS
|
223 |
+
if next_token.item() == self.tokenizer.eos_token_id and generated_tokens.size(1) < min_length:
|
224 |
+
continue # Skip EOS if output is too short
|
225 |
+
|
226 |
+
# Stop if the EOS token is generated and minimum length is reached
|
227 |
+
if next_token.item() == self.tokenizer.eos_token_id:
|
228 |
+
break
|
229 |
+
|
230 |
+
# Decode the generated tokens back to text
|
231 |
+
generated_text = self.tokenizer.decode(generated_tokens[0].tolist())
|
232 |
+
|
233 |
+
return generated_text
|
234 |
+
|
235 |
+
def forward(self, input_ids, attention_mask=None, labels=None):
|
236 |
+
"""
|
237 |
+
Forward pass of the model. If labels are provided, the loss is also computed.
|
238 |
+
"""
|
239 |
+
batch_size, seq_length = input_ids.size()
|
240 |
+
|
241 |
+
# Generate position ids
|
242 |
+
position_ids = torch.arange(0, seq_length, dtype=torch.long, device=input_ids.device)
|
243 |
+
position_ids = position_ids.unsqueeze(0).expand(batch_size, seq_length)
|
244 |
+
|
245 |
+
# Embed tokens and positions
|
246 |
+
token_embeddings = self.token_embedding(input_ids)
|
247 |
+
position_embeddings = self.position_embedding(position_ids)
|
248 |
+
|
249 |
+
# Combine token and position embeddings
|
250 |
+
embeddings = token_embeddings + position_embeddings
|
251 |
+
embeddings = self.dropout(embeddings)
|
252 |
+
|
253 |
+
# Create causal mask
|
254 |
+
device = embeddings.device
|
255 |
+
causal_mask = torch.tril(torch.ones((seq_length, seq_length), device=device)).unsqueeze(0).unsqueeze(0)
|
256 |
+
|
257 |
+
# Combine with attention mask if provided
|
258 |
+
if attention_mask is not None:
|
259 |
+
# Expand attention_mask to match dimensions
|
260 |
+
attention_mask = attention_mask[:, None, None, :].float()
|
261 |
+
combined_mask = attention_mask * causal_mask
|
262 |
+
else:
|
263 |
+
combined_mask = causal_mask
|
264 |
+
|
265 |
+
# Pass through each transformer layer with prenormalization and LayerScale
|
266 |
+
for layer in self.layers:
|
267 |
+
# Prenormalization before self-attention
|
268 |
+
embeddings_norm = layer["norm1"](embeddings)
|
269 |
+
attn_output = layer["attn"](embeddings_norm, attention_mask=combined_mask)
|
270 |
+
# Apply LayerScale for attention output
|
271 |
+
embeddings = embeddings + layer.layer_scale_attn * attn_output
|
272 |
+
|
273 |
+
# Prenormalization before feed-forward network
|
274 |
+
embeddings_norm = layer["norm2"](embeddings)
|
275 |
+
ffn_output = layer["ffn"](embeddings_norm)
|
276 |
+
# Apply LayerScale for feed-forward output
|
277 |
+
embeddings = embeddings + layer.layer_scale_ffn * ffn_output
|
278 |
+
|
279 |
+
# Apply final LayerNorm before output
|
280 |
+
embeddings = self.final_norm(embeddings)
|
281 |
+
|
282 |
+
# Compute logits (unnormalized scores)
|
283 |
+
logits = self.fc_out(embeddings)
|
284 |
+
|
285 |
+
# Compute loss if labels are provided
|
286 |
+
loss = None
|
287 |
+
if labels is not None:
|
288 |
+
shift_logits = logits[:, :-1, :].contiguous().view(-1, self.config.vocab_size)
|
289 |
+
shift_labels = labels[:, 1:].contiguous().view(-1)
|
290 |
+
|
291 |
+
# Base cross-entropy loss
|
292 |
+
loss_fct = nn.CrossEntropyLoss()
|
293 |
+
loss = loss_fct(shift_logits, shift_labels)
|
294 |
+
|
295 |
+
return {"loss": loss, "logits": logits}
|