antoinelouis
commited on
Commit
•
1fbb475
1
Parent(s):
3c3ed5d
Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- config.json +40 -0
- mmarco_smalldev_scores.csv +7 -0
- model.safetensors +3 -0
- special_tokens_map.json +23 -0
- spiece.model +3 -0
- t5.py +195 -0
- tokenizer.json +3 -0
- tokenizer_config.json +38 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google/mt5-base",
|
3 |
+
"architectures": [
|
4 |
+
"MT5EncoderForSequenceClassification"
|
5 |
+
],
|
6 |
+
"classifier_dropout": 0.0,
|
7 |
+
"d_ff": 2048,
|
8 |
+
"d_kv": 64,
|
9 |
+
"d_model": 768,
|
10 |
+
"decoder_start_token_id": 0,
|
11 |
+
"dense_act_fn": "gelu_new",
|
12 |
+
"dropout_rate": 0.1,
|
13 |
+
"eos_token_id": 1,
|
14 |
+
"feed_forward_proj": "gated-gelu",
|
15 |
+
"id2label": {
|
16 |
+
"0": "LABEL_0"
|
17 |
+
},
|
18 |
+
"initializer_factor": 1.0,
|
19 |
+
"is_encoder_decoder": false,
|
20 |
+
"is_gated_act": true,
|
21 |
+
"label2id": {
|
22 |
+
"LABEL_0": 0
|
23 |
+
},
|
24 |
+
"layer_norm_epsilon": 1e-06,
|
25 |
+
"model_type": "mt5",
|
26 |
+
"num_decoder_layers": null,
|
27 |
+
"num_heads": 12,
|
28 |
+
"num_layers": 12,
|
29 |
+
"output_past": true,
|
30 |
+
"pad_token_id": 0,
|
31 |
+
"pooling_mode": "mean",
|
32 |
+
"relative_attention_max_distance": 128,
|
33 |
+
"relative_attention_num_buckets": 32,
|
34 |
+
"tie_word_embeddings": false,
|
35 |
+
"tokenizer_class": "T5Tokenizer",
|
36 |
+
"torch_dtype": "float32",
|
37 |
+
"transformers_version": "4.36.2",
|
38 |
+
"use_cache": false,
|
39 |
+
"vocab_size": 250112
|
40 |
+
}
|
mmarco_smalldev_scores.csv
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cutoff,mrr,recall,r-precision
|
2 |
+
0,20000,5,0.2699546322827125,0.42583572110792745,0.17494030563514806
|
3 |
+
0,20000,10,0.28493837267476235,0.5348018147086915,0.17494030563514806
|
4 |
+
0,20000,20,0.2916781083810777,0.6319126074498568,0.17494030563514806
|
5 |
+
0,20000,50,0.29533158523611325,0.744878223495702,0.17494030563514806
|
6 |
+
0,20000,100,0.2963288717867327,0.8173352435530086,0.17494030563514806
|
7 |
+
0,20000,500,0.2970346866747076,0.9555157593123209,0.17494030563514806
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4fb8927f32655411e3ecb62e140889e3ff1658c945d34394b9c0236d3a66dd7
|
3 |
+
size 1110540068
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eos_token": {
|
3 |
+
"content": "</s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"pad_token": {
|
10 |
+
"content": "<pad>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef78f86560d809067d12bac6c09f19a462cb3af3f54d2b8acbba26e1433125d6
|
3 |
+
size 4309802
|
t5.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from typing import Optional, Union, Tuple
|
4 |
+
|
5 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
6 |
+
from transformers.models.t5.modeling_t5 import T5Config, T5ClassificationHead, T5EncoderModel
|
7 |
+
from transformers.models.mt5.modeling_mt5 import MT5Config, MT5ClassificationHead, MT5EncoderModel
|
8 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
|
9 |
+
|
10 |
+
|
11 |
+
def clean_t5_config(config: Union[T5Config, MT5Config], model_type: str):
|
12 |
+
assert model_type in ['t5', 'mt5']
|
13 |
+
setattr(config, 'pooling_mode', 'mean')
|
14 |
+
setattr(config, 'model_type', model_type)
|
15 |
+
setattr(config, 'use_cache', False)
|
16 |
+
setattr(config, 'is_encoder_decoder', False)
|
17 |
+
setattr(config, 'num_decoder_layers', None)
|
18 |
+
delattr(config, 'task_specific_params') if hasattr(config, 'task_specific_params') else None
|
19 |
+
|
20 |
+
|
21 |
+
class T5EncoderForSequenceClassification(T5EncoderModel):
|
22 |
+
"""
|
23 |
+
T5 encoder for sequence classification tasks.
|
24 |
+
|
25 |
+
:param config: The T5 configuration object.
|
26 |
+
"""
|
27 |
+
def __init__(self, config: T5Config):
|
28 |
+
super().__init__(config)
|
29 |
+
self.pool_layer = PoolLayer(config.pooling_mode)
|
30 |
+
self.classification_head = T5ClassificationHead(config)
|
31 |
+
|
32 |
+
def forward(
|
33 |
+
self,
|
34 |
+
input_ids: Optional[torch.LongTensor] = None,
|
35 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
36 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
37 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
38 |
+
labels: Optional[torch.LongTensor] = None,
|
39 |
+
output_attentions: Optional[bool] = None,
|
40 |
+
output_hidden_states: Optional[bool] = None,
|
41 |
+
return_dict: Optional[bool] = None,
|
42 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
43 |
+
"""
|
44 |
+
Forward pass of the T5 encoder for sequence classification tasks.
|
45 |
+
|
46 |
+
:param input_ids: The input token IDs.
|
47 |
+
:param attention_mask: The attention mask.
|
48 |
+
:param head_mask: The head mask.
|
49 |
+
:param inputs_embeds: The input embeddings.
|
50 |
+
:param labels: The target labels.
|
51 |
+
:param output_attentions: Whether to output attentions.
|
52 |
+
:param output_hidden_states: Whether to output hidden states.
|
53 |
+
:param return_dict: Whether to return a dictionary.
|
54 |
+
:returns: The logits for the classification task or a dictionary containing the outputs.
|
55 |
+
"""
|
56 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
57 |
+
loss = None
|
58 |
+
|
59 |
+
outputs = self.encoder(
|
60 |
+
input_ids=input_ids,
|
61 |
+
attention_mask=attention_mask,
|
62 |
+
inputs_embeds=inputs_embeds,
|
63 |
+
head_mask=head_mask,
|
64 |
+
output_attentions=output_attentions,
|
65 |
+
output_hidden_states=output_hidden_states,
|
66 |
+
return_dict=return_dict,
|
67 |
+
)
|
68 |
+
sequence_output = self.pool_layer(outputs.last_hidden_state, attention_mask)
|
69 |
+
logits = self.classification_head(sequence_output)
|
70 |
+
|
71 |
+
if not return_dict:
|
72 |
+
output = (logits,) + outputs[2:]
|
73 |
+
return ((loss,) + output) if loss is not None else output
|
74 |
+
|
75 |
+
return SequenceClassifierOutput(
|
76 |
+
loss=loss,
|
77 |
+
logits=logits,
|
78 |
+
hidden_states=outputs.hidden_states,
|
79 |
+
attentions=outputs.attentions,
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
+
class MT5EncoderForSequenceClassification(MT5EncoderModel):
|
84 |
+
"""
|
85 |
+
mT5 encoder for sequence classification tasks.
|
86 |
+
|
87 |
+
:param config: The mT5 configuration object.
|
88 |
+
"""
|
89 |
+
def __init__(self, config: MT5Config):
|
90 |
+
super().__init__(config)
|
91 |
+
self.pool_layer = PoolLayer(config.pooling_mode)
|
92 |
+
self.classification_head = MT5ClassificationHead(config)
|
93 |
+
|
94 |
+
def forward(
|
95 |
+
self,
|
96 |
+
input_ids: Optional[torch.LongTensor] = None,
|
97 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
98 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
99 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
100 |
+
labels: Optional[torch.LongTensor] = None,
|
101 |
+
output_attentions: Optional[bool] = None,
|
102 |
+
output_hidden_states: Optional[bool] = None,
|
103 |
+
return_dict: Optional[bool] = None,
|
104 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
105 |
+
"""
|
106 |
+
Forward pass of the mT5 encoder for sequence classification tasks.
|
107 |
+
|
108 |
+
:param input_ids: The input token IDs.
|
109 |
+
:param attention_mask: The attention mask.
|
110 |
+
:param head_mask: The head mask.
|
111 |
+
:param inputs_embeds: The input embeddings.
|
112 |
+
:param labels: The target labels.
|
113 |
+
:param output_attentions: Whether to output attentions.
|
114 |
+
:param output_hidden_states: Whether to output hidden states.
|
115 |
+
:param return_dict: Whether to return a dictionary.
|
116 |
+
:returns: The logits for the classification task or a dictionary containing the outputs.
|
117 |
+
"""
|
118 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
119 |
+
loss = None
|
120 |
+
|
121 |
+
outputs = self.encoder(
|
122 |
+
input_ids=input_ids,
|
123 |
+
attention_mask=attention_mask,
|
124 |
+
inputs_embeds=inputs_embeds,
|
125 |
+
head_mask=head_mask,
|
126 |
+
output_attentions=output_attentions,
|
127 |
+
output_hidden_states=output_hidden_states,
|
128 |
+
return_dict=return_dict,
|
129 |
+
)
|
130 |
+
sequence_output = self.pool_layer(outputs.last_hidden_state, attention_mask)
|
131 |
+
logits = self.classification_head(sequence_output)
|
132 |
+
|
133 |
+
if not return_dict:
|
134 |
+
output = (logits,) + outputs[2:]
|
135 |
+
return ((loss,) + output) if loss is not None else output
|
136 |
+
|
137 |
+
return SequenceClassifierOutput(
|
138 |
+
loss=loss,
|
139 |
+
logits=logits,
|
140 |
+
hidden_states=outputs.hidden_states,
|
141 |
+
attentions=outputs.attentions,
|
142 |
+
)
|
143 |
+
|
144 |
+
|
145 |
+
class PoolLayer(nn.Module):
|
146 |
+
"""
|
147 |
+
Pooling layer on top of the commputed token embeddings.
|
148 |
+
|
149 |
+
:param pooling_mode: The pooling strategy to use.
|
150 |
+
"""
|
151 |
+
def __init__(self, pooling_mode: str):
|
152 |
+
super().__init__()
|
153 |
+
assert pooling_mode in ['first', 'mean', 'max'], f"ERROR: Unknown pooling strategy '{pooling_mode}'"
|
154 |
+
self.pooling_mode = pooling_mode
|
155 |
+
|
156 |
+
def forward(self, token_embeddings: torch.Tensor, attention_masks: torch.Tensor) -> torch.Tensor:
|
157 |
+
"""
|
158 |
+
Compute the passage vector by pooling the token embeddings.
|
159 |
+
|
160 |
+
:param token_embeddings: A 3D tensor of size [batch_size, seq_len, d_model].
|
161 |
+
:param attention_masks: A 2D tensor of size [batch_size, seq_len].
|
162 |
+
:returns: A 2D tensor of size [batch_size, d_model].
|
163 |
+
"""
|
164 |
+
if self.pooling_mode == 'first':
|
165 |
+
text_vectors = token_embeddings[:, 0, :]
|
166 |
+
elif self.pooling_mode == 'max':
|
167 |
+
# Set all values of the [PAD] embeddings to large negative values (so that they are never considered as maximum for a channel).
|
168 |
+
attention_masks_expanded = attention_masks.unsqueeze(-1).expand(token_embeddings.size())
|
169 |
+
token_embeddings[attention_masks_expanded == 0] = -1e+9 if token_embeddings.dtype == torch.float32 else -1e+4
|
170 |
+
# Compute the maxima along the 'seq_length' dimension (-> Tensor[batch_size, d_model]).
|
171 |
+
text_vectors = torch.max(token_embeddings, dim=1).values
|
172 |
+
else:
|
173 |
+
# Set all values of the [PAD] embeddings to zeros (so that they are not taken into account in the sum for a channel).
|
174 |
+
attention_masks_expanded = attention_masks.unsqueeze(-1).expand(token_embeddings.size())
|
175 |
+
token_embeddings[attention_masks_expanded == 0] = 0.0
|
176 |
+
# Compute the means by first summing along the 'seq_length' dimension (-> Tensor[batch_size, d_model]).
|
177 |
+
sum_embeddings = torch.sum(token_embeddings, dim=1)
|
178 |
+
# Then, divide all values of a passage vector by the original passage length.
|
179 |
+
sum_mask = attention_masks_expanded.sum(dim=1) # -> Tensor[batch_size, d_model] where each value is the length of the corresponding passage.
|
180 |
+
sum_mask = torch.clamp(sum_mask, min=1e-7) # Make sure not to have zeros by lower bounding all elements to 1e-7.
|
181 |
+
text_vectors = sum_embeddings / sum_mask # Divide each dimension by the sequence length.
|
182 |
+
return text_vectors
|
183 |
+
|
184 |
+
|
185 |
+
if __name__ == "__main__":
|
186 |
+
config = AutoConfig.from_pretrained(model_name)
|
187 |
+
if isinstance(config, T5Config):
|
188 |
+
clean_t5_config(self.config, model_type='t5')
|
189 |
+
model = T5EncoderForSequenceClassification.from_pretrained(model_name, config=config)
|
190 |
+
elif isinstance(config, MT5Config):
|
191 |
+
clean_t5_config(self.config, model_type='t5')
|
192 |
+
model = MT5EncoderForSequenceClassification.from_pretrained(model_name, config=config)
|
193 |
+
else:
|
194 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, config=config)
|
195 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, **tokenizer_args)
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1ae0f5ccb75b6fbb45cda86ea3c1cc20beb32758bebc9629efc9207c8b08f06
|
3 |
+
size 16330714
|
tokenizer_config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<pad>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "</s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "<unk>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
}
|
27 |
+
},
|
28 |
+
"additional_special_tokens": [],
|
29 |
+
"clean_up_tokenization_spaces": true,
|
30 |
+
"eos_token": "</s>",
|
31 |
+
"extra_ids": 0,
|
32 |
+
"legacy": true,
|
33 |
+
"model_max_length": 256,
|
34 |
+
"pad_token": "<pad>",
|
35 |
+
"sp_model_kwargs": {},
|
36 |
+
"tokenizer_class": "T5Tokenizer",
|
37 |
+
"unk_token": "<unk>"
|
38 |
+
}
|