Sentence Similarity
sentence-transformers
PyTorch
Safetensors
xmod
passage-retrieval
File size: 10,282 Bytes
46685c5
 
a14bd32
 
 
 
 
 
d0082a4
a14bd32
d0082a4
a14bd32
9442503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46685c5
 
9442503
46685c5
 
9442503
 
 
 
 
 
 
 
 
190315e
9442503
 
46685c5
 
5c98770
46685c5
9442503
 
dd5abaa
46685c5
9442503
 
 
46685c5
 
 
 
9442503
 
 
 
 
 
46685c5
9442503
 
46685c5
9442503
 
 
 
dd5abaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9442503
46685c5
9442503
46685c5
 
 
9442503
46685c5
 
9442503
46685c5
 
 
 
 
9442503
 
 
46685c5
9442503
 
 
46685c5
9442503
 
46685c5
9442503
 
 
 
 
 
 
 
 
 
46685c5
9442503
46685c5
9442503
46685c5
dd5abaa
 
46685c5
d547d61
 
 
 
 
 
 
 
 
 
 
9442503
 
46685c5
 
 
dd5abaa
46685c5
dd5abaa
46685c5
dd5abaa
46685c5
dd5abaa
46685c5
9442503
 
 
 
 
 
 
 
 
190315e
9442503
190315e
 
9442503
190315e
9442503
ffb789d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
---
pipeline_tag: sentence-similarity
datasets:
- ms_marco
- sentence-transformers/msmarco-hard-negatives
metrics:
- recall
tags:
- passage-retrieval
library_name: sentence-transformers
base_model: facebook/xmod-base
inference: false
language: 
- multilingual
- af
- am
- ar
- az
- be
- bg
- bn
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- ga
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- no
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- si
- sk
- sl
- so
- sq
- sr
- sv
- sw
- ta
- te
- th
- tl
- tr
- uk
- ur
- uz
- vi
- zh
---

<h1 align="center">DPR-XM</h1>


<h4 align="center">
  <p>
      <a href=#usage>🛠️ Usage</a>  |
      <a href="#evaluation">📊 Evaluation</a> |
      <a href="#train">🤖 Training</a> |
      <a href="#citation">🔗 Citation</a> |
  <p>
  <p>
    <a href="https://github.com/ant-louis/xm-retrievers">💻 Code</a>  |
    <a href="https://arxiv.org/abs/2402.15059">📄 Paper</a>
  <p>
</h4>


This is a **multilingual** dense single-vector bi-encoder model. It maps questions and paragraphs 768-dimensional dense vectors and can be used for semantic search. The model uses an [XMOD](https://huggingface.co/facebook/xmod-base) backbone, which allows it to learn from monolingual fine-tuning in a high-resource language, like English, and perform zero-shot retrieval across multiple languages.

## Usage

Here are some examples for using DPR-XM with [Sentence-Transformers](#using-sentence-transformers), [FlagEmbedding](#using-flagembedding), or [Huggingface Transformers](#using-huggingface-transformers).

#### Using Sentence-Transformers

Start by installing the [library](https://www.SBERT.net): `pip install -U sentence-transformers`. Then, you can use the model like this:

```python
from sentence_transformers import SentenceTransformer

queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]
language_code = "fr_FR" #Find all codes here: https://huggingface.co/facebook/xmod-base#languages 

model = SentenceTransformer('antoinelouis/dpr-xm')
model[0].auto_model.set_default_language(language_code) #Activate the language-specific adapters

q_embeddings = model.encode(queries, normalize_embeddings=True)
p_embeddings = model.encode(passages, normalize_embeddings=True)

similarity = q_embeddings @ p_embeddings.T
print(similarity)
```

#### Using FlagEmbedding

Start by installing the [library](https://github.com/FlagOpen/FlagEmbedding/): `pip install -U FlagEmbedding`. Then, you can use the model like this:

```python
from FlagEmbedding import FlagModel

queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]
language_code = "fr_FR" #Find all codes here: https://huggingface.co/facebook/xmod-base#languages 

model = FlagModel('antoinelouis/dpr-xm')
model.model.set_default_language(language_code) #Activate the language-specific adapters

q_embeddings = model.encode(queries, normalize_embeddings=True)
p_embeddings = model.encode(passages, normalize_embeddings=True)

similarity = q_embeddings @ p_embeddings.T
print(similarity)
```

#### Using Transformers

Start by installing the [library](https://huggingface.co/docs/transformers): `pip install -U transformers`. Then, you can use the model like this:

```python
from transformers import AutoTokenizer, AutoModel
from torch.nn.functional import normalize

def mean_pooling(model_output, attention_mask):
    """ Perform mean pooling on-top of the contextualized word embeddings, while ignoring mask tokens in the mean computation."""
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]
language_code = "fr_FR" #Find all codes here: https://huggingface.co/facebook/xmod-base#languages 

tokenizer = AutoTokenizer.from_pretrained('antoinelouis/dpr-xm')
model = AutoModel.from_pretrained('antoinelouis/dpr-xm')
model.set_default_language(language_code) #Activate the language-specific adapters

q_input = tokenizer(queries, padding=True, truncation=True, return_tensors='pt')
p_input = tokenizer(passages, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
    q_output = model(**encoded_queries)
    p_output = model(**encoded_passages)
q_embeddings = mean_pooling(q_output, q_input['attention_mask'])
q_embedddings = normalize(q_embeddings, p=2, dim=1)
p_embeddings = mean_pooling(p_output, p_input['attention_mask'])
p_embedddings = normalize(p_embeddings, p=2, dim=1)

similarity = q_embeddings @ p_embeddings.T
print(similarity)
```

***

## Evaluation

- **mMARCO**: 
We evaluate our model on the small development sets of [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco), which consists of 6,980 queries for a corpus of 8.8M candidate passages in 14 languages. Below, we compared its multilingual performance with other retrieval models on the dataset official metrics, i.e., mean reciprocal rank at cut-off 10 (MRR@10).

|    | model                                                                                                                                   |          Type | #Samples | #Params |   en |   es |   fr |   it |   pt |   id |   de |   ru |   zh |   ja |   nl |   vi |   hi |   ar | Avg. |
|---:|:----------------------------------------------------------------------------------------------------------------------------------------|:--------------|:--------:|:-------:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|
|  1 | BM25 ([Pyserini](https://github.com/castorini/pyserini))                                                                                |       lexical |        - |       - | 18.4 | 15.8 | 15.5 | 15.3 | 15.2 | 14.9 | 13.6 | 12.4 | 11.6 | 14.1 | 14.0 | 13.6 | 13.4 | 11.1 | 14.2 |
|  2 | mono-mT5 ([Bonfacio et al., 2021](https://doi.org/10.48550/arXiv.2108.13897))                                                           | cross-encoder |    12.8M |    390M | 36.6 | 31.4 | 30.2 | 30.3 | 30.2 | 29.8 | 28.9 | 26.3 | 24.9 | 26.7 | 29.2 | 25.6 | 26.6 | 23.5 | 28.6 |
|  3 | mono-mMiniLM ([Bonfacio et al., 2021](https://doi.org/10.48550/arXiv.2108.13897))                                                       | cross-encoder |    80.0M |    107M | 36.6 | 30.9 | 29.6 | 29.1 | 28.9 | 29.3 | 27.8 | 25.1 | 24.9 | 26.3 | 27.6 | 24.7 | 26.2 | 21.9 | 27.8 |
|  4 | [DPR-X](https://huggingface.co/eugene-yang/dpr-xlmr-large-mtt-neuclir) ([Yang et al., 2022](https://doi.org/10.48550/arXiv.2204.11989)) | single-vector |    25.6M |    550M | 24.5 | 19.6 | 18.9 | 18.3 | 19.0 | 16.9 | 18.2 | 17.7 | 14.8 | 15.4 | 18.5 | 15.1 | 15.4 | 12.9 | 17.5 |
|  5 | [mE5-base](https://huggingface.co/intfloat/multilingual-e5-base) ([Wang et al., 2024](https://doi.org/10.48550/arXiv.2402.05672))       | single-vector |     5.1B |    278M | 35.0 | 28.9 | 30.3 | 28.0 | 27.5 | 26.1 | 27.1 | 24.5 | 22.9 | 25.0 | 27.3 | 23.9 | 24.2 | 20.5 | 26.5 |
|  6 | mColBERT ([Bonfacio et al., 2021](https://doi.org/10.48550/arXiv.2108.13897))                                                           |  multi-vector |    25.6M |    180M | 35.2 | 30.1 | 28.9 | 29.2 | 29.2 | 27.5 | 28.1 | 25.0 | 24.6 | 23.6 | 27.3 | 18.0 | 23.2 | 20.9 | 26.5 |
|    |                                                                                                                                         |               |          |         |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |     
|  7 | **DPR-XM** (ours)                                                                                                                       | single-vector |    25.6M |    277M | 32.7 | 23.6 | 23.5 | 22.3 | 22.7 | 22.0 | 22.1 | 19.9 | 18.1 | 18.7 | 22.9 | 18.0 | 16.0 | 15.1 | 21.3 |
|  8 | [ColBERT-XM](https://huggingface.co/antoinelouis/colbert-xm) (ours)                                                                     |  multi-vector |     6.4M |    277M | 37.2 | 28.5 | 26.9 | 26.5 | 27.6 | 26.3 | 27.0 | 25.1 | 24.6 | 24.1 | 27.5 | 22.6 | 23.8 | 19.5 | 26.2 |

***

## Training

#### Data

We use the English training samples from the [MS MARCO passage ranking](https://ir-datasets.com/msmarco-passage.html#msmarco-passage/train) dataset, which contains 8.8M passages and 539K training queries. We do not employ the BM25 netaives provided by the official dataset but instead sample harder negatives mined from 12 distinct dense retrievers, using the [msmarco-hard-negatives](https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives) distillation dataset. Our final training set consists of 25.6M (q, p+, p-) triples.

#### Implementation

The model is initialized from the [xmod-base](https://huggingface.co/facebook/xmod-base) checkpoint and optimized via the in-batch sampled softmax cross-entropy loss (as in [DPR](https://doi.org/10.48550/arXiv.2004.04906)). It is fine-tuned on one 32GB NVIDIA V100 GPU for 200k steps using the AdamW optimizer with a batch size of 128, a peak learning rate of 2e-5 with warm up along the first 10\% of training steps and linear scheduling. We set the maximum sequence lengths for both the questions and passages to 128 tokens.

***

## Citation

```bibtex
@article{louis2024modular,
  author = {Louis, Antoine and Saxena, Vageesh and van Dijck, Gijs and Spanakis, Gerasimos},
  title = {ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot Multilingual Information Retrieval},
  journal = {CoRR},
  volume = {abs/2402.15059},
  year = {2024},
  url = {https://arxiv.org/abs/2402.15059},
  doi = {10.48550/arXiv.2402.15059},
  eprinttype = {arXiv},
  eprint = {2402.15059},
}
```