anton-l HF staff commited on
Commit
b194362
1 Parent(s): b10ffa6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - audio-classification
5
+ - generated_from_trainer
6
+ datasets:
7
+ - superb
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: wav2vec2-base-keyword-spotting
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # wav2vec2-base-keyword-spotting
19
+
20
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0746
23
+ - Accuracy: 0.9843
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 3e-05
43
+ - train_batch_size: 32
44
+ - eval_batch_size: 32
45
+ - seed: 0
46
+ - gradient_accumulation_steps: 4
47
+ - total_train_batch_size: 128
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - lr_scheduler_warmup_ratio: 0.1
51
+ - num_epochs: 5.0
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
58
+ | 0.8279 | 1.0 | 399 | 0.6792 | 0.8558 |
59
+ | 0.2961 | 2.0 | 798 | 0.1383 | 0.9798 |
60
+ | 0.2069 | 3.0 | 1197 | 0.0972 | 0.9809 |
61
+ | 0.1757 | 4.0 | 1596 | 0.0843 | 0.9825 |
62
+ | 0.1607 | 5.0 | 1995 | 0.0746 | 0.9843 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.11.0.dev0
68
+ - Pytorch 1.9.1+cu111
69
+ - Datasets 1.12.1
70
+ - Tokenizers 0.10.3